Least-Squares-Based Iterative Identification Algorithm for Wiener Nonlinear Systems

This paper focuses on the identification problem of Wiener nonlinear systems. The application of the key-term separation principle provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurable variables in the information vector with their corresponding iterative estimates. The simulation results indicate that the proposed algorithm is effective.

[1]  Feng Ding,et al.  Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis , 2010, Circuits Syst. Signal Process..

[2]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[3]  F. Ding,et al.  Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle , 2013 .

[4]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[5]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[6]  Yong Zhang,et al.  Bias compensation methods for stochastic systems with colored noise , 2011 .

[7]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[8]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[9]  Feng Ding,et al.  Gradient based and least-squares based iterative identification methods for OE and OEMA systems , 2010, Digit. Signal Process..

[10]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.

[11]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[12]  Feng Ding,et al.  Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems , 2011, Comput. Math. Appl..

[13]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[14]  Wei Wang,et al.  Maximum likelihood least squares identification for systems with autoregressive moving average noise , 2012 .

[15]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[16]  Jie Ding,et al.  Bias compensation‐based parameter estimation for output error moving average systems , 2011 .

[17]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[18]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[19]  Feng Ding,et al.  Decomposition based fast least squares algorithm for output error systems , 2013, Signal Process..

[20]  Feng Ding,et al.  Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique , 2011, Comput. Math. Appl..

[21]  Tongwen Chen,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Transactions on Automatic Control.

[22]  Ruifeng Ding,et al.  Iterative parameter identification methods for nonlinear functions , 2012 .

[23]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[24]  H-Z Fan,et al.  Optimizing tool-path generation for three-axis machining of a sculptured impeller blade surface , 2012 .

[25]  Feng Ding,et al.  Hierarchical least-squares based iterative identification for multivariable systems with moving average noises , 2010, Math. Comput. Model..

[26]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[27]  Y. Liu,et al.  Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems , 2012, J. Syst. Control. Eng..

[28]  Feng Ding,et al.  Several multi-innovation identification methods , 2010, Digit. Signal Process..

[29]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[30]  F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling ☆ , 2013 .

[31]  P. X. Liu,et al.  Multiinnovation Least-Squares Identification for System Modeling , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[32]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[33]  Feng Ding,et al.  Hierarchical identification of lifted state-space models for general dual-rate systems , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[35]  Ruifeng Ding,et al.  Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities , 2014 .

[36]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[37]  Feng Ding,et al.  Bias compensation based recursive least-squares identification algorithm for MISO systems , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  Rui Ding,et al.  Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search , 2012, Circuits Syst. Signal Process..

[39]  Xiangli Li,et al.  Least-squares-based iterative identification algorithm for Hammerstein nonlinear systems with non-uniform sampling , 2013, Int. J. Comput. Math..

[40]  Ruifeng Ding,et al.  Iterative identification algorithm for Wiener nonlinear systems using the Newton method , 2013 .

[41]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[42]  F. Ding,et al.  Convergence properties of the least squares estimation algorithm for multivariable systems , 2013 .

[43]  Feng Ding,et al.  Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification principle , 2012, Circuits Syst. Signal Process..

[44]  Weili Xiong,et al.  Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems , 2012, J. Appl. Math..

[45]  Feng Ding,et al.  Parameter estimation with scarce measurements , 2011, Autom..

[46]  Xiangli Li,et al.  Gradient-based iterative identification for MISO Wiener nonlinear systems: Application to a glutamate fermentation process , 2013, Appl. Math. Lett..

[47]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[48]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..

[49]  Lincheng Zhou,et al.  Gradient based iterative parameter identification for Wiener nonlinear systems , 2013 .

[50]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[51]  Huizhong Yang,et al.  Modelling and identification for non-uniformly periodically sampled-data systems , 2010 .

[52]  Publisher Kunderi Mahaboob,et al.  Journal of Electrical Engineering , 2014 .

[53]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[54]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[55]  Jozef Vörös,et al.  Identification of Nonlinear Cascade Systems with Time-Varying Backlash , 2011 .

[56]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[57]  Junxia Ma,et al.  An iterative numerical algorithm for modeling a class of Wiener nonlinear systems , 2013, Appl. Math. Lett..

[58]  Feng Ding,et al.  Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems , 2012, Math. Comput. Model..

[59]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[60]  Feng Ding,et al.  Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems , 2010, Digit. Signal Process..