ECO Method and the Exhaustive Generation of Convex Polyominoes
暂无分享,去创建一个
[1] Renzo Pinzani,et al. Jumping succession rules and their generating functions , 2003, Discret. Math..
[2] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[3] Neil J. A. Sloane,et al. The encyclopedia of integer sequences , 1995 .
[4] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[5] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..
[6] M. Bousquet-Mélou,et al. Convex polyominoes and algebraic languages , 1992 .
[7] Martin Loebl,et al. Generating convex polyominoes at random , 1996, Discret. Math..
[8] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[9] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[10] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[11] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[12] Elena Barcucci,et al. Some combinatorial interpretations ofq-analogs of Schröder numbers , 1999 .
[13] Renzo Pinzani,et al. An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..
[14] D. Kleitman,et al. Covering Regions by Rectangles , 1981 .
[15] Maurice Nivat,et al. Reconstructing Convex Polyominoes from Horizontal and Vertical Projections , 1996, Theor. Comput. Sci..
[16] Alberto Del Lungo,et al. Random Generation of Trees and Other Combinatorial Objects , 1999, Theor. Comput. Sci..
[17] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .