Input-output-to-state stability for discrete-time systems

This paper presents Lyapunov characterizations of uniform output-to-state stability and uniform input-output-to-state stability (IOSS) (with respect to disturbances) for discrete-time (DT) nonlinear systems. We show the equivalence of the following three properties for DT systems: uniform IOSS, existence of a smooth Lyapunov function for uniform IOSS, and existence of a (state-)norm estimator. This equivalence result is a DT counterpart of Krichman et al. [2001. Input-output-to-state stability. SIAM Journal on Control and Optimization 39, 1874-1928. Theorem 2.4] and a generalization of Jiang and Wang [2002. A converse Lyapunov theorem for discrete-time systems with disturbances. Systems and Control Letters 45, 49-58. Theorem 1.1] and Jiand and Wang [2001. Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857-869. Theorem 1, [email protected]?4].

[1]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[2]  Andrew R. Teel,et al.  On the Robustness of KL-stability for Difference Inclusions: Smooth Discrete-Time Lyapunov Functions , 2005, SIAM J. Control. Optim..

[3]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[4]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[5]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[6]  Alessandro Astolfi,et al.  Global complete observability and output-to-state stability imply the existence of a globally convergent observer , 2006, Math. Control. Signals Syst..

[7]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[8]  Alessandro Astolfi,et al.  Norm estimators and global output feedback stabilization of nonlinear systems with ISS inverse dynamics , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Aram V. Arutyunov Optimality conditions in abnormal extremal problems , 1996 .

[10]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[11]  Miroslav Krstic,et al.  Optimal mixing enhancement in 3-D pipe flow , 2005, IEEE Transactions on Control Systems Technology.

[12]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[13]  Andrew R. Teel,et al.  Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..

[14]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[15]  Chaohong Cai,et al.  Asymptotic characterizations of input-output-to-state stability for discrete-time systems , 2007, Syst. Control. Lett..

[16]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[17]  Dragan Nesic,et al.  Changing supply rates for input-output to state stable discrete-time nonlinear systems with applications , 2003, Autom..

[18]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[19]  David Angeli,et al.  Separation Principles for Input-Output and Integral-Input-to-State Stability , 2004, SIAM J. Control. Optim..

[20]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[21]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[22]  Eduardo D. Sontag,et al.  Characterizations of detectability notions in terms of discontinuous dissipation functions , 2002 .

[23]  Eduardo Sontag,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999, at - Automatisierungstechnik.

[24]  D. Liberzon,et al.  On Input-to-State Stability of Impulsive Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  W. Rugh Linear System Theory , 1992 .

[26]  D. Angeli Intrinsic robustness of global asymptotic stability , 1999 .

[27]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .