Ceilometer-Based Rain-Rate Estimation: A Case-Study Comparison With S-Band Radar and Disdrometer Retrievals in the Context of VORTEX-SE

Attenuated backscatter measurements from a Vaisala CL31 ceilometer and a modified form of the well-known slope method are used to derive the ceilometer extinction profiles during rain events, restricted to rainfall rates (RRs) below approximately 10 mm/h. RR estimates from collocated S-band radar and portable disdrometer are used to derive the RR-to-extinction correlation models for the ceilometer–radar and ceilometer–disdrometer combinations. Data were collected during an intensive observation period of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) conducted in northern Alabama. These models are used to estimate the RR from the ceilometer observations in similar situations that do not have collocated radar or the disdrometer. Such correlation models are, however, limited by the different temporal and spatial resolutions of the measured variables, measurement capabilities of the instruments, and the inherent assumption of a homogeneous atmosphere. An empirical method based on extinction and RR uncertainty scoring and covariance fitting are proposed to solve, in part, these limitations.

[1]  K. A. Browning,et al.  The Determination of Kinematic Properties of a Wind Field Using Doppler Radar , 1968 .

[2]  D. Short,et al.  Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds , 1996 .

[3]  J. S. Marshall,et al.  Advances in Radar Weather , 1955 .

[4]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[5]  Kenji Isono,et al.  Life Time of Water Drops before Breaking and Size Distribution of Fragment Droplets , 1964 .

[6]  A Comerón,et al.  Assessment of lidar inversion errors for homogeneous atmospheres. , 1998, Applied optics.

[7]  F. Martin Ralph,et al.  Raindrop Size Distributions and Rain Characteristics in California Coastal Rainfall for Periods with and without a Radar Bright Band , 2008 .

[8]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[9]  Witold F. Krajewski,et al.  Radar hydrology: rainfall estimation. , 2002 .

[10]  H. Pruppacher,et al.  A Semi-Empirical Determination of the Shape of Cloud and Rain Drops , 1971 .

[11]  R. Rogers A review of multiparameter radar observations of precipitation , 1984 .

[12]  R. C. Srivastava,et al.  Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm , 1971 .

[13]  Gerrit de Leeuw,et al.  Inversion of lidar signals with the slope method. , 1993, Applied optics.

[14]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[15]  Philip B. Bedient,et al.  Estimation of Rainfall for Flood Prediction from WSR-88D Reflectivity: A Case Study, 17–18 October 1994* , 1998 .

[16]  J. W. Telford A NEW ASPECT OF COALESCENCE THEORY , 1955 .

[17]  Francesc Rocadenbosch,et al.  Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  G. Roy,et al.  Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation. , 2001, Applied optics.

[19]  David B. Wolff,et al.  Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2 , 2014 .

[20]  H. R. Pruppacher,et al.  A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air , 1970 .

[21]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[22]  Andreas Macke,et al.  Light scattering by nonspherical raindrops: Implications for lidar remote sensing of rainrates , 1998 .

[23]  E. O'connor,et al.  A Technique for Autocalibration of Cloud Lidar , 2004 .

[24]  M Schaldach,et al.  [Design of digital filters]. , 1982, Biomedizinische Technik. Biomedical engineering.

[25]  Robin J. Hogan,et al.  Estimating drizzle drop size and precipitation rate using two-colour lidar measurements , 2010 .

[26]  Witold F. Krajewski,et al.  Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence , 2009 .

[27]  C. J. Gibbins,et al.  Prediction of apparent extinction for optical transmission through rain. , 1996, Applied optics.

[28]  F. Martin Ralph,et al.  Using Radar-Measured Radial Vertical Velocities to Distinguish Precipitation Scattering from Clear-Air Scattering , 1995 .

[29]  Comparative rainfall data analysis from two vertically pointing radars, an optical disdrometer, and a rain gauge , 2008 .

[30]  Christopher A. Cantrell,et al.  Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems , 2008 .

[31]  Henri Sauvageot,et al.  The Probability Density Function of Rain Rate and the Estimation of Rainfall by Area Integrals , 1994 .

[32]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[33]  G. Foote,et al.  Terminal Velocity of Raindrops Aloft , 1969 .

[34]  Martial Haeffelin,et al.  Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers , 2016 .

[35]  J. Klett,et al.  Lidar calibration and extinction coefficients. , 1983, Applied optics.

[36]  C. Williams,et al.  A Field Study of Reflectivity and Z–R Relations Using Vertically Pointing Radars and Disdrometers , 2009 .

[37]  R. Gunn,et al.  THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR , 1949 .

[38]  D. Rensch,et al.  Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6 micro and 0.63 micro. , 1970, Applied optics.

[39]  Eugenio Gorgucci,et al.  Simulation of X-Band Rainfall Observations from S-Band Radar Data , 2006 .

[40]  Laurent Barthes,et al.  DEVEX-disdrometer evaluation experiment : Basic results and implications for hydrologic studies , 2006 .

[41]  C. Williams Vertical Air Motion Retrieved from Dual-Frequency Profiler Observations , 2012 .

[42]  W. Eichinger,et al.  Analytical Solutions of the Lidar Equation , 2005 .

[43]  Carlton W. Ulbrich,et al.  Assessment of the contribution of differential polarization to improved rainfall measurements , 1984 .

[44]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[45]  Francesc Rocadenbosch,et al.  Piece-wise variance method for signal-to-noise ratio estimation in elastic/Raman lidar signals , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Terry Lucke,et al.  Rain Drop Measurement Techniques: A Review , 2016 .

[47]  P. Tattelman,et al.  Drop-Size Distributions Associated with Intense Rainfall , 1989 .

[48]  David D. Turner,et al.  A New Generation of Ground-Based Mobile Platforms for Active and Passive Profiling of the Boundary Layer , 2019, Bulletin of the American Meteorological Society.

[49]  Arthur Y. Hou,et al.  Estimation of Rain Intensity Spectra over the Continental United States Using Ground Radar-Gauge Measurements , 2012 .

[50]  D. Turner,et al.  Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar , 2014 .

[51]  Earl E. Gossard Radar Research on the Atmospheric Boundary Layer , 1990 .

[52]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[53]  A. Kokhanovsky,et al.  Integral light-scattering and absorption characteristics of large, nonspherical particles. , 1997, Applied optics.

[54]  Christopher R. Williams,et al.  Raindrop size distribution variability estimated using ensemble statistics , 2009 .