Fully coupled thermo-viscoplastic analysis of composite structures by means of multi-scale three-dimensional finite element computations

Abstract The current paper presents a two scale Finite Element approach (FE2), adopting the periodic homogenization method, for fully coupled thermo-mechanical processes. The aim of this work is to predict the overall response of rate-dependent, non-linear, thermo-mechanically coupled problems of 3D periodic composite structures. The material constituents implicated in the analyses obey generalized standard materials laws, while the characteristic equations of the problem (balance law, first law of thermodynamics) are expressed and satisfied in both microscopic and macroscopic scales. For the numerical implementation in both scales, the finite element commercial software ABAQUS is utilized in the framework of small strains and rotations. A set of dedicated scripts and a specially designed Meta-UMAT subroutine allow the connection between the macroscopic structure and the microscopic unit cells attached to every macroscopic integration point. The two-scale finite element framework is applied to simulate thermoelastic-viscoplastic materials of complex 3D composite structures, and its capabilities are demonstrated with proper numerical examples. It is worth mentioning that the proposed computational strategy can be applied for any kind of 3D periodic microstructure and non-linear constitutive law.

[1]  Shuguang Li,et al.  On the unit cell for micromechanical analysis of fibre-reinforced composites , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[3]  Jean-Louis Chaboche,et al.  On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites , 2005 .

[4]  G. Chatzigeorgiou,et al.  Mathematical homogenization of inelastic dissipative materials: a survey and recent progress , 2018 .

[5]  I. Temizer,et al.  On the asymptotic expansion treatment of two-scale finite thermoelasticity , 2012 .

[6]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[7]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[8]  W. Brekelmans,et al.  FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids , 2008 .

[9]  M. Pindera,et al.  Plasticity-triggered architectural effects in periodic multilayers with wavy microstructures , 2010 .

[10]  P. Germain Sur certaines définitions liées à l'énergie en mécanique des solides , 1982 .

[11]  Hamid Zahrouni,et al.  A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber Composites , 2010 .

[12]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[13]  Emmanuel Roubin,et al.  Reduced order modeling strategies for computational multiscale fracture , 2017 .

[14]  J. Aboudi,et al.  Higher-order theory for periodic multiphase materials with inelastic phases , 2003 .

[15]  Alain Molinari,et al.  Homogenization of elastic-viscoplastic heterogeneous materials : Self-consistent and Mori-Tanaka schemes , 2009 .

[16]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[17]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[18]  H. Ene On linear thermoelasticity of composite materials , 1983 .

[19]  A. Bertram,et al.  On the introduction of thermoplasticity , 2012, Acta Mechanica.

[20]  B. Piotrowski,et al.  Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures , 2018, Composite Structures.

[21]  Hamid Zahrouni,et al.  3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method , 2018, Composite Structures.

[22]  Yves Chemisky,et al.  Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials , 2016 .

[23]  M. Pindera,et al.  Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures , 2007 .

[24]  Yufeng Nie,et al.  Second-Order Two-Scale Computational Method for Nonlinear Dynamic Thermo-Mechanical Problems of Composites with Cylindrical Periodicity , 2017 .

[25]  Yves Chemisky,et al.  Computational micro to macro transitions for shape memory alloy composites using periodic homogenization , 2015 .

[26]  R. Taylor,et al.  A multiscale finite element method for modeling fully coupled thermomechanical problems in solids , 2012 .

[27]  P. Suquet,et al.  Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates , 2013 .

[28]  D. Anagnostou,et al.  Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites , 2018, Composites Part B: Engineering.

[29]  M. Benzeggagh,et al.  Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures , 2002 .

[30]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[31]  J. Chaboche,et al.  Multi-scale analysis in elasto-viscoplasticity coupled with damage , 2011 .

[32]  G. Chatzigeorgiou,et al.  Phenomenological multi-mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation , 2017 .

[33]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[34]  J. Mandel,et al.  Cours de mécanique des milieux continus , 1994 .

[35]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[36]  G. Allaire Homogenization and two-scale convergence , 1992 .

[37]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[38]  Shuguang Li,et al.  General unit cells for micromechanical analyses of unidirectional composites , 2001 .

[39]  M. Berveiller,et al.  Comparison of different homogenization approaches for elastic–viscoplastic materials , 2012 .

[40]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[41]  A. Menzel,et al.  Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings , 2017 .

[42]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[43]  Micromechanics-based thermoviscoelastic constitutive equations for rubber-like matrix composites at finite strains , 2004 .

[44]  N. Ohno,et al.  Fully implicit formulation of elastoplastic homogenization problem for two-scale analysis , 2007 .

[45]  Juliane Junker Topics In The Mathematical Modelling Of Composite Materials , 2016 .

[46]  Shuguang Li,et al.  Unit cells for micromechanical analyses of particle-reinforced composites , 2004 .