Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

[1]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[2]  T. Wydeven,et al.  Chemical interpretation of Viking Lander 1 life detection experiment , 1978, Nature.

[3]  Klaus Keil,et al.  The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .

[4]  F. Fanale,et al.  Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation , 1974 .

[5]  D. Ming,et al.  Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes , 2012 .

[6]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[7]  L. A. Wood,et al.  Adsorption of Water Vapor by Montmorillonite. I. Heat of Desorption and Application of BET Theory1 , 1952 .

[8]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[9]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[10]  P. Meslin,et al.  Experimental study of radon production and transport in an analogue for the Martian regolith , 2011 .

[11]  S. Iwata,et al.  Differential heat of water adsorption for montmorillonite, kaolinite and allophane , 1989, Clay Minerals.

[12]  A. Harri,et al.  High-fidelity subsurface thermal model as part of a Martian atmospheric column model , 2013 .

[13]  S. Maurice,et al.  Mars Odyssey neutron data: 1. Data processing and models of water‐equivalent‐hydrogen distribution , 2011 .

[14]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[15]  Y. Kitagawa Dehydration of allophane and lts structural formula , 1974 .

[16]  B. Schmitt,et al.  Kinetics of water adsorption on minerals and the breathing of the Martian regolith , 2010 .

[17]  Carol R. Stoker,et al.  Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site , 2009 .

[18]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[19]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[20]  O. Aharonson,et al.  Subsurface ice on Mars with rough topography , 2005 .

[21]  S. Murchie,et al.  Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.

[22]  R. Morris,et al.  The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under martian environmental conditions , 2009 .

[23]  Jean-Pierre Bibring,et al.  Abundance of minerals in the phyllosilicate-rich units on Mars , 2008 .

[24]  K. N. Dollman,et al.  - 1 , 1743 .

[25]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[26]  T. Tokano,et al.  Hydration state and abundance of zeolites on Mars and the water cycle , 2005 .

[27]  T. Henmi,et al.  Adsorption of Water on Nano-ball Allophane , 2006 .

[28]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[29]  S. Clegg,et al.  Remote laser‐induced breakdown spectroscopy (LIBS) for lunar exploration , 2012 .

[30]  D. Möhlmann,et al.  Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals , 2006 .

[31]  William V. Boynton,et al.  Quantitative geochemical mapping of martian elemental provinces , 2010 .

[32]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[33]  O. Aharonson,et al.  Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements , 2008 .

[34]  D. Möhlmann,et al.  Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences , 2004 .

[35]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[36]  A. Zent,et al.  Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity , 1997 .

[37]  William V. Boynton,et al.  Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey , 2007 .

[38]  N. Bridges,et al.  Missing Components in Chemical Profiles of a Sand Drift in Gale Crater , 2013 .

[39]  O. Forni,et al.  High Calcium Phase Observations at Rocknest with ChemCam , 2013 .

[40]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[41]  F. Bartoli,et al.  Influence of allophane and organic matter contents on surface properties of Andosols , 2007 .

[42]  R. C. Wiens,et al.  Martian Fluvial Conglomerates at Gale Crater , 2013, Science.

[43]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[44]  B. Schmitt,et al.  Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy , 2009 .

[45]  Urs Staufer,et al.  Quantification of the dry history of the Martian soil inferred from in situ microscopy , 2011 .

[46]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[47]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[48]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[49]  M. Mellon,et al.  Hydration state of zeolites, clays, and hydrated salts under present-day martian surface conditions : Can hydrous minerals account for Mars odyssey Observations of near-equatorial water-equivalent hydrogen? , 2005 .

[50]  Robert B. Leighton,et al.  The Surface of Mars , 2007 .

[51]  A. R. Tice,et al.  The analysis of water in the Martian regolith , 1979, Journal of Molecular Evolution.

[52]  J. Mustard,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .

[53]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[54]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[55]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[56]  Robert L. Tokar,et al.  Compositions Determined by ChemCam Along Curiosity's Traverse from Bradbury Station to Glenelg in Gale Crater, Mars , 2013 .

[57]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[58]  H. McSween,et al.  Determining the modal mineralogy of Martian soils , 2010 .

[59]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[60]  R. Dahlgren,et al.  Volcanic ash soils : genesis, properties and utilization , 1993 .

[61]  S. Clegg,et al.  Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques , 2009 .

[62]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[63]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[64]  Stewart Clegg,et al.  Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis , 2010 .

[65]  R. Eggleton,et al.  Hisingerite: A Ferric Kaolin Mineral with Curved Morphology , 1998 .

[66]  Jean-François Cardoso,et al.  Dependence, Correlation and Gaussianity in Independent Component Analysis , 2003, J. Mach. Learn. Res..

[67]  P. F. Low,et al.  Frost Phenomena on Mars , 1967, Science.

[68]  Robert L. Tokar,et al.  Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover , 2013 .

[69]  H. McSween,et al.  Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering , 2012 .

[70]  T. Encrenaz,et al.  Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express , 2011 .

[71]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[72]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[73]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[74]  Y. Langevin,et al.  An iterative least squares approach to decorrelate minerals and ices contributions in hyperspectral images: Application to Cuprite (earth) and Mars , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[75]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[76]  D. R. Rushneck,et al.  Search for Organic and Volatile Inorganic Compounds in Two Surface Samples from the Chryse Planitia Region of Mars , 1976, Science.

[77]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[78]  Roger C. Wiens,et al.  Independent component analysis classification of laser induced breakdown spectroscopy spectra , 2013 .

[79]  N. Bridges,et al.  Rocknest Sand Shadow at the Curiosity Field Site: Morphology, Origin and Stabilization , 2013 .