Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
暂无分享,去创建一个
M B Madsen | Robert L. Tokar | N Mangold | N. Bridges | K. Herkenhoff | O. Forni | R. Wiens | S. Maurice | O. Gasnault | J. Johnson | B. Ehlmann | A. Mezzacappa | M. Madsen | D. Blaney | S. Le Mouélic | W. Goetz | M. Dyar | A. Harri | L. Leshin | J. Grotzinger | D. Vaniman | B. Barraclough | S. Bender | J. Blank | A. Cousin | L. Deflores | D. Delapp | C. Fabre | Y. Langevin | N. Lanza | J. Lasue | N. Mangold | H. Newsom | A. Ollila | R. Perez | V. Sautter | S. Clegg | N. Melikechi | B. Clark | R. Anderson | R. Léveillé | P. Meslin | P. Pinet | B. Gondet | N. Renno | M. Fisk | D. Bish | J. Sirven | J. Lacour | G. Dromart | J. Moores | M. Mischna | S. Schröder | D. Archer | E. Lewin | G. Berger | P-Y Meslin | O Gasnault | O Forni | S Schröder | A Cousin | G Berger | S M Clegg | J Lasue | S Maurice | V Sautter | S Le Mouélic | R C Wiens | C Fabre | W Goetz | D Bish | B Ehlmann | N Lanza | A-M Harri | R Anderson | E Rampe | T H McConnochie | P Pinet | D Blaney | R Léveillé | D Archer | B Barraclough | S Bender | D Blake | J G Blank | N Bridges | B C Clark | L DeFlores | D Delapp | G Dromart | M D Dyar | M Fisk | B Gondet | J Grotzinger | K Herkenhoff | J Johnson | J-L Lacour | Y Langevin | L Leshin | E Lewin | N Melikechi | A Mezzacappa | M A Mischna | J E Moores | H Newsom | A Ollila | R Perez | N Renno | J-B Sirven | R Tokar | M de la Torre | L d'Uston | D Vaniman | A Yingst | E. Rampe | L. D'Uston | D. Blake | A. Yingst | M. de la Torre | T. McConnochie | N. Rennó
[1] D. Ming,et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .
[2] T. Wydeven,et al. Chemical interpretation of Viking Lander 1 life detection experiment , 1978, Nature.
[3] Klaus Keil,et al. The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .
[4] F. Fanale,et al. Exchange of adsorbed H2O and CO2 between the regolith and atmosphere of Mars caused by changes in surface insolation , 1974 .
[5] D. Ming,et al. Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes , 2012 .
[6] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[7] L. A. Wood,et al. Adsorption of Water Vapor by Montmorillonite. I. Heat of Desorption and Application of BET Theory1 , 1952 .
[8] R. Haberle,et al. The seasonal behavior of water on Mars , 1992 .
[9] Jean-Pierre Bibring,et al. Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .
[10] P. Meslin,et al. Experimental study of radon production and transport in an analogue for the Martian regolith , 2011 .
[11] S. Iwata,et al. Differential heat of water adsorption for montmorillonite, kaolinite and allophane , 1989, Clay Minerals.
[12] A. Harri,et al. High-fidelity subsurface thermal model as part of a Martian atmospheric column model , 2013 .
[13] S. Maurice,et al. Mars Odyssey neutron data: 1. Data processing and models of water‐equivalent‐hydrogen distribution , 2011 .
[14] Jean-Pierre Bibring,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .
[15] Y. Kitagawa. Dehydration of allophane and lts structural formula , 1974 .
[16] B. Schmitt,et al. Kinetics of water adsorption on minerals and the breathing of the Martian regolith , 2010 .
[17] Carol R. Stoker,et al. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site , 2009 .
[18] R. V. Morris,et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.
[19] D. Vaniman,et al. Stability of hydrous minerals on the martian surface , 2003 .
[20] O. Aharonson,et al. Subsurface ice on Mars with rough topography , 2005 .
[21] S. Murchie,et al. Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.
[22] R. Morris,et al. The H2O and CO2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under martian environmental conditions , 2009 .
[23] Jean-Pierre Bibring,et al. Abundance of minerals in the phyllosilicate-rich units on Mars , 2008 .
[24] K. N. Dollman,et al. - 1 , 1743 .
[25] N. Izenberg,et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.
[26] T. Tokano,et al. Hydration state and abundance of zeolites on Mars and the water cycle , 2005 .
[27] T. Henmi,et al. Adsorption of Water on Nano-ball Allophane , 2006 .
[28] D. Ming,et al. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.
[29] S. Clegg,et al. Remote laser‐induced breakdown spectroscopy (LIBS) for lunar exploration , 2012 .
[30] D. Möhlmann,et al. Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals , 2006 .
[31] William V. Boynton,et al. Quantitative geochemical mapping of martian elemental provinces , 2010 .
[32] Richard D. Starr,et al. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .
[33] O. Aharonson,et al. Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements , 2008 .
[34] D. Möhlmann,et al. Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences , 2004 .
[35] Harry Y. McSween,et al. What we have learned about Mars from SNC meteorites , 1994 .
[36] A. Zent,et al. Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity , 1997 .
[37] William V. Boynton,et al. Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey , 2007 .
[38] N. Bridges,et al. Missing Components in Chemical Profiles of a Sand Drift in Gale Crater , 2013 .
[39] O. Forni,et al. High Calcium Phase Observations at Rocknest with ChemCam , 2013 .
[40] Rudolf Rieder,et al. Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .
[41] F. Bartoli,et al. Influence of allophane and organic matter contents on surface properties of Andosols , 2007 .
[42] R. C. Wiens,et al. Martian Fluvial Conglomerates at Gale Crater , 2013, Science.
[43] Amitabha Ghosh,et al. An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.
[44] B. Schmitt,et al. Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy , 2009 .
[45] Urs Staufer,et al. Quantification of the dry history of the Martian soil inferred from in situ microscopy , 2011 .
[46] R. Clark,et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .
[47] S. Taylor,et al. Planetary Crusts: Their Composition, Origin and Evolution , 2009 .
[48] D. Ming,et al. H2O at the Phoenix Landing Site , 2009, Science.
[49] M. Mellon,et al. Hydration state of zeolites, clays, and hydrated salts under present-day martian surface conditions : Can hydrous minerals account for Mars odyssey Observations of near-equatorial water-equivalent hydrogen? , 2005 .
[50] Robert B. Leighton,et al. The Surface of Mars , 2007 .
[51] A. R. Tice,et al. The analysis of water in the Martian regolith , 1979, Journal of Molecular Evolution.
[52] J. Mustard,et al. Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .
[53] Raymond E. Arvidson,et al. Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .
[54] N. Bridges,et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .
[55] R. E. Arvidson,et al. Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.
[56] Robert L. Tokar,et al. Compositions Determined by ChemCam Along Curiosity's Traverse from Bradbury Station to Glenelg in Gale Crater, Mars , 2013 .
[57] M. Saccoccio,et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .
[58] H. McSween,et al. Determining the modal mineralogy of Martian soils , 2010 .
[59] R. V. Morris,et al. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.
[60] R. Dahlgren,et al. Volcanic ash soils : genesis, properties and utilization , 1993 .
[61] S. Clegg,et al. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques , 2009 .
[62] Lorraine Schnabel,et al. Chemical composition of Martian fines , 1982 .
[63] R. Rieder,et al. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.
[64] Stewart Clegg,et al. Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis , 2010 .
[65] R. Eggleton,et al. Hisingerite: A Ferric Kaolin Mineral with Curved Morphology , 1998 .
[66] Jean-François Cardoso,et al. Dependence, Correlation and Gaussianity in Independent Component Analysis , 2003, J. Mach. Learn. Res..
[67] P. F. Low,et al. Frost Phenomena on Mars , 1967, Science.
[68] Robert L. Tokar,et al. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover , 2013 .
[69] H. McSween,et al. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering , 2012 .
[70] T. Encrenaz,et al. Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express , 2011 .
[71] B. Jakosky. The seasonal cycle of water on Mars , 1985 .
[72] E. Sebastián,et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .
[73] Jean-Pierre Bibring,et al. Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.
[74] Y. Langevin,et al. An iterative least squares approach to decorrelate minerals and ices contributions in hyperspectral images: Application to Cuprite (earth) and Mars , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.
[75] R. V. Morris,et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.
[76] D. R. Rushneck,et al. Search for Organic and Volatile Inorganic Compounds in Two Surface Samples from the Chryse Planitia Region of Mars , 1976, Science.
[77] R. Rieder,et al. Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.
[78] Roger C. Wiens,et al. Independent component analysis classification of laser induced breakdown spectroscopy spectra , 2013 .
[79] N. Bridges,et al. Rocknest Sand Shadow at the Curiosity Field Site: Morphology, Origin and Stabilization , 2013 .