Dense Crystalline Dimer Packings of Regular Tetrahedra

[1]  Alexander Jaoshvili,et al.  Experiments on the random packing of tetrahedral dice. , 2010, Physical review letters.

[2]  S Torquato,et al.  Exact constructions of a family of dense periodic packings of tetrahedra. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Kai Sun,et al.  Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons , 2010, Science.

[4]  S. Torquato,et al.  Analytical Constructions of a Family of Dense Tetrahedron Packings and the Role of Symmetry , 2009, 0912.4210.

[5]  Aaron S. Keys,et al.  Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra , 2009, Nature.

[6]  Veit Elser,et al.  Dense Periodic Packings of Tetrahedra with Small Repeating Units , 2009, Discret. Comput. Geom..

[7]  S. Gravel,et al.  A dense periodic packing of tetrahedra with a small repeating unit , 2009 .

[8]  S Torquato,et al.  Dense packings of polyhedra: Platonic and Archimedean solids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Glotzer,et al.  Dense packings of hard tetrahedra , 2009 .

[10]  Elizabeth R. Chen,et al.  A Dense Packing of Regular Tetrahedra , 2008, Discret. Comput. Geom..

[11]  Zhiyong Tang,et al.  Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. , 2007, Nano letters.

[12]  P. Chaikin,et al.  Packing of Tetrahedral and other Dice , 2007 .

[13]  Zhiyong Tang,et al.  Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets , 2006, Science.

[14]  S Torquato,et al.  Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Hales The Kepler conjecture , 1998, math/9811078.

[16]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[17]  M. Henk,et al.  Densest lattice packings of 3-polytopes , 1999, Comput. Geom..

[18]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[19]  T. Hahn,et al.  International Tables for Crystallography: Volume A: Space-Group Symmetry , 1987 .

[20]  Marjorie Senechal,et al.  Which Tetrahedra Fill Space , 1981 .

[21]  Helmut Groemer Über die dichteste gitterförmige Lagerung kongruenter Tetraeder , 1962 .

[22]  E. R. Chen A Picturebook of Tetrahedral Packings. , 2010 .

[23]  S. Torquato,et al.  Dense packings of the Platonic and Archimedean solids , 2009 .

[24]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[25]  Martin Gardner,et al.  The colossal book of mathematics : classic puzzles, paradoxes, and problems : number theory, algebra, geometry, probability, topology, game theory, infinity, and other topics of recreational mathematics , 2001 .

[26]  Martin Gardner,et al.  The Colossal Book of Mathematics , 2001 .

[27]  Douglas J. Hoylman THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .

[28]  H. Minkowski Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .

[29]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .