The numerics of phase retrieval

Phase retrieval, i.e. the problem of recovering a function from the squared magnitude of its Fourier transform, arises in many applications, such as X-ray crystallography, diffraction imaging, optics, quantum mechanics and astronomy. This problem has confounded engineers, physicists, and mathematicians for many decades. Recently, phase retrieval has seen a resurgence in research activity, ignited by new imaging modalities and novel mathematical concepts. As our scientific experiments produce larger and larger datasets and we aim for faster and faster throughput, it is becoming increasingly important to study the involved numerical algorithms in a systematic and principled manner. Indeed, the past decade has witnessed a surge in the systematic study of computational algorithms for phase retrieval. In this paper we will review these recent advances from a numerical viewpoint.

[1]  Simon R. Arridge,et al.  Solving inverse problems using data-driven models , 2019, Acta Numerica.

[2]  Yonina C. Eldar,et al.  DOLPHIn—Dictionary Learning for Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[3]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[4]  K. Nugent,et al.  Phase retrieval in x-ray imaging based on using structured illumination , 2008 .

[5]  Yue M. Lu,et al.  Spectral initialization for nonconvex estimation: High-dimensional limit and phase transitions , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[6]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[7]  Qian Chen,et al.  Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. , 2016, Optics express.

[8]  C. Sinan Güntürk,et al.  Convergence of the randomized Kaczmarz method for phase retrieval , 2017, ArXiv.

[9]  Pengwen Chen,et al.  Phase Retrieval by Linear Algebra , 2017, SIAM J. Matrix Anal. Appl..

[10]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[11]  W. H. Benner,et al.  Single particle X-ray diffractive imaging. , 2007, Nano letters.

[12]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[13]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[14]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[15]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[16]  S. Kikuta,et al.  X-ray holography of lensless Fourier-transform type , 1972 .

[17]  Emmanuel J. Candès,et al.  Dual-Reference Design for Holographic Coherent Diffraction Imaging , 2019, ArXiv.

[18]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[19]  Peter Jung,et al.  Blind Demixing and Deconvolution at Near-Optimal Rate , 2017, IEEE Transactions on Information Theory.

[20]  Yue M. Lu,et al.  Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation , 2017, Information and Inference: A Journal of the IMA.

[21]  James V. Burke,et al.  Optical Wavefront Reconstruction: Theory and Numerical Methods , 2002, SIAM Rev..

[22]  G. Papavassilopoulos,et al.  On the rank minimization problem over a positive semidefinite linear matrix inequality , 1997, IEEE Trans. Autom. Control..

[23]  J. Rodenburg,et al.  Soft X-ray spectromicroscopy using ptychography with randomly phased illumination , 2013, Nature Communications.

[24]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[25]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[26]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[27]  Holger Boche,et al.  Phase retrieval from low rate samples , 2013, ArXiv.

[28]  Richard G. Baraniuk,et al.  BM3D-PRGAMP: Compressive phase retrieval based on BM3D denoising , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[29]  A. Faridian,et al.  Nanoscale imaging using deep ultraviolet digital holographic microscopy. , 2010, Optics express.

[30]  J. Goodman Introduction to Fourier optics , 1969 .

[31]  Brendan Ames,et al.  Solving ptychography with a convex relaxation , 2014, New journal of physics.

[32]  J. Romberg,et al.  A flexible convex relaxation for phase retrieval , 2017 .

[33]  Shake-and-bake: an algorithm for automatic solution ab initio of crystal structures. , 1997, Methods in enzymology.

[34]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[35]  Robert M. Gray,et al.  Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .

[36]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[37]  S. Marchesini,et al.  Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns. , 2010, Physical review letters.

[38]  Michael Unser,et al.  Exact complex-wave reconstruction in digital holography. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  R. Horstmeyer,et al.  Diffraction tomography with Fourier ptychography. , 2015, Optica.

[40]  T. Latychevskaia,et al.  Imaging Blockinproteins Blockinat Blockinthe Blockinsingle Blockinmolecule Blockinlevel Classification: Blockinphysical Blockinsciences/applied Blockinphysical Blockinsciences , 2022 .

[41]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[42]  Richard A. London,et al.  Femtosecond time-delay X-ray holography , 2007, Nature.

[43]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[44]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[45]  Fucai Zhang,et al.  Phase retrieval by coherent modulation imaging , 2016, Nature Communications.

[46]  L. G. Sodin,et al.  On the ambiguity of the image reconstruction problem , 1979 .

[47]  A. Singer MATHEMATICS FOR CRYO-ELECTRON MICROSCOPY , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[48]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[49]  Sae-Young Chung,et al.  Fourier Phase Retrieval With Extended Support Estimation via Deep Neural Network , 2019, IEEE Signal Processing Letters.

[50]  Christos Thrampoulidis,et al.  Phase retrieval via linear programming: Fundamental limits and algorithmic improvements , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[51]  Chao Yang,et al.  Efficient Algorithms for Ptychographic Phase Retrieval , 2014 .

[52]  J. Miao,et al.  Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method , 2007 .

[53]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[54]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[55]  J. Glusker The Patterson function , 1984 .

[56]  Ben Leshem,et al.  Direct phase retrieval in double blind Fourier holography. , 2014, Optics express.

[57]  T. Blundell,et al.  Structural biology and drug discovery. , 2005, Drug discovery today.

[58]  C. Beck,et al.  Computational study and comparisons of LFT reducibility methods , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[59]  A. E. Ingham On Tauberian Theorems , 1965 .

[60]  Andrea Montanari,et al.  Fundamental Limits of Weak Recovery with Applications to Phase Retrieval , 2017, COLT.

[61]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[62]  Yonina C. Eldar,et al.  Fourier Phase Retrieval: Uniqueness and Algorithms , 2017, ArXiv.

[63]  A. Fannjiang,et al.  Fixed Point Analysis of Douglas-Rachford Splitting for Ptychography and Phase Retrieval , 2020, SIAM J. Imaging Sci..

[64]  D. Gabor A New Microscopic Principle , 1948, Nature.

[65]  Gerlind Plonka-Hoch,et al.  Sparse Phase Retrieval of One-Dimensional Signals by Prony's Method , 2017, Front. Appl. Math. Stat..

[66]  Alexander V. Tikhonravov,et al.  The phase retrieval problem , 1995 .

[67]  Grover A. Swartzlander,et al.  Randomized apertures: high resolution imaging in far field. , 2017, Optics express.

[68]  Dan Edidin,et al.  An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.

[69]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[70]  Cynthia Vinzant,et al.  A small frame and a certificate of its injectivity , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[71]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[72]  Qionghai Dai,et al.  Fourier ptychographic microscopy using a generalized Anscombe transform approximation of the mixed Poisson-Gaussian likelihood. , 2017, Optics express.

[73]  James R. Fienup,et al.  Phase-retrieval stagnation problems and solutions , 1986 .

[74]  E. Loewen,et al.  Diffraction Gratings and Applications , 2018 .

[75]  Shiva Kumar,et al.  Fiber Optic Communications: Fundamentals and Applications , 2014 .

[76]  P. Thibault,et al.  Novel Methods for Hard X-ray Holographic Lensless Imaging , 2016, Microscopy and Microanalysis.

[77]  Yuxin Chen,et al.  Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval , 2018, Mathematical Programming.

[78]  Jun Tanida,et al.  Single-shot phase imaging with randomized light (SPIRaL). , 2016, Optics express.

[79]  L. Demanet,et al.  Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.

[80]  Tatiana Latychevskaia,et al.  Iterative phase retrieval for digital holography: tutorial. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  Pengwen Chen,et al.  Coded aperture ptychography: uniqueness and reconstruction , 2017, 1709.01984.

[82]  T. Latychevskaia,et al.  Fourier Transform Holography: A Lensless Non-Destructive Imaging Technique , 2012, Microscopy and Microanalysis.

[83]  Tom Goldstein,et al.  PhasePack: A phase retrieval library , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[84]  Felix Krahmer,et al.  Complex Phase Retrieval from Subgaussian Measurements , 2019, Journal of Fourier Analysis and Applications.

[85]  Laura Waller,et al.  Experimental robustness of Fourier Ptychography phase retrieval algorithms , 2015, Optics express.

[86]  Radu V. Balan,et al.  On signal reconstruction from its spectrogram , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[87]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[88]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[89]  Richard G. Baraniuk,et al.  prDeep: Robust Phase Retrieval with a Flexible Deep Network , 2018, ICML.

[90]  Albert Fannjiang,et al.  Blind Ptychography: Uniqueness and Ambiguities. , 2018 .

[91]  Xiangnan Wang,et al.  Fast phase retrieval in off-axis digital holographic microscopy through deep learning. , 2018, Optics express.

[92]  Florent Krzakala,et al.  Phase recovery from a Bayesian point of view: The variational approach , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[93]  Edmund Taylor Whittaker Philosophic Foundations of Quantum Mechanics , 1946, Nature.

[94]  Tatiana Latychevskaia,et al.  Practical algorithms for simulation and reconstruction of digital in-line holograms. , 2014, Applied optics.

[95]  Jannes Gladrow,et al.  Digital phase-only holography using deep conditional generative models , 2019, ArXiv.

[96]  H P Urbach,et al.  Model-independent noise-robust extension of ptychography. , 2018, Optics express.

[97]  Pengwen Chen,et al.  Fourier Phase Retrieval with a Single Mask by Douglas-Rachford Algorithm , 2015, Applied and computational harmonic analysis.

[98]  Alexandre d'Aspremont,et al.  Coherent diffractive imaging using randomly coded masks , 2015, 1509.03229.

[99]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[100]  A. Fannjiang,et al.  Phase Retrieval with One or Two Diffraction Patterns by Alternating Projections with the Null Initialization , 2015, 1510.07379.

[101]  Yonina C. Eldar,et al.  Sparse Phase Retrieval from Short-Time Fourier Measurements , 2014, IEEE Signal Processing Letters.

[102]  Ke Wei Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study , 2015 .

[103]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[104]  J. Rodenburg,et al.  Noise models for low counting rate coherent diffraction imaging. , 2012, Optics express.

[105]  Paul Hand,et al.  PhaseLift is robust to a constant fraction of arbitrary errors , 2015, 1502.04241.

[106]  Reinhold Schneider,et al.  Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.

[107]  P. Thibault X-ray ptychography , 2011 .

[108]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[109]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[110]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[111]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[112]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[113]  Felix Krahmer,et al.  A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.

[114]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[115]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[116]  Qionghai Dai,et al.  Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient , 2016, Scientific Reports.

[117]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[118]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[119]  Vladislav Voroninski,et al.  Phase Retrieval Under a Generative Prior , 2018, NeurIPS.

[120]  T. Latychevskaia,et al.  When holography meets coherent diffraction imaging. , 2011, Optics express.

[121]  J. Miao,et al.  The oversampling phasing method. , 2000, Acta crystallographica. Section D, Biological crystallography.

[122]  H M L Faulkner,et al.  Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy. , 2005, Ultramicroscopy.

[123]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[124]  Rick P. Millane,et al.  Recent advances in phase retrieval , 2006, SPIE Optics + Photonics.

[125]  G. W. Stroke,et al.  Reconstruction of Phase Objects by Holography , 1965, Nature.

[126]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[127]  Holger Rauhut,et al.  Low rank matrix recovery from rank one measurements , 2014, ArXiv.

[128]  Ziyang Yuan,et al.  Phase Retrieval via Sparse Wirtinger Flow , 2017, J. Comput. Appl. Math..

[129]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[130]  Norman E. Hurt,et al.  Phase Retrieval and Zero Crossings , 1989 .

[131]  Thomas Strohmer,et al.  Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds , 2015, IEEE Transactions on Information Theory.

[132]  Justin Romberg,et al.  Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation , 2016, AISTATS.

[133]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[134]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[135]  Peter G. Casazza,et al.  Equivalence of Reconstruction From the Absolute Value of the Frame Coefficients to a Sparse Representation Problem , 2007, IEEE Signal Processing Letters.

[136]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[137]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[138]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[139]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[140]  David Marcus Appleby,et al.  Tight frames, Hadamard matrices and Zauner’s conjecture , 2019, Journal of Physics A: Mathematical and Theoretical.

[141]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[142]  From white elephant to Nobel Prize: Dennis Gabor's wavefront reconstruction , 2005 .

[143]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[144]  Yan Shuo Tan,et al.  Phase Retrieval via Randomized Kaczmarz: Theoretical Guarantees , 2017, ArXiv.

[145]  Pablo Enfedaque,et al.  Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers , 2018, SIAM J. Imaging Sci..

[146]  Talita Perciano,et al.  SHARP: a distributed, GPU-based ptychographic solver , 2016, 1602.01448.

[147]  D. Russell Phase Retrieval , What ’ s New ? , 2017 .

[148]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[149]  Manuel Guizar-Sicairos,et al.  Holography with extended reference by autocorrelation linear differential operation. , 2007, Optics express.

[150]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[151]  O. Bunk,et al.  Coherent diffractive imaging using phase front modifications. , 2008, Physical review letters.

[152]  Philip Schniter,et al.  A Message-Passing Approach to Phase Retrieval of Sparse Signals , 2015 .

[153]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[154]  S. Marchesini,et al.  Shaping coherent x-rays with binary optics. , 2018, Optics express.

[155]  Yue M. Lu,et al.  Optimal Spectral Initialization for Signal Recovery With Applications to Phase Retrieval , 2018, IEEE Transactions on Signal Processing.

[156]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[157]  L. Pelkmans,et al.  Ameobal Pathogen Mimivirus Infects Macrophages through Phagocytosis , 2008, PLoS pathogens.

[158]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[159]  P. Thibault,et al.  Maximum-likelihood refinement for coherent diffractive imaging , 2012 .

[160]  D. L. Misell Comment onA method for the solution of the phase problem in electron microscopy , 1973 .

[161]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[162]  Ju Sun,et al.  Dual-Reference Design for Holographic Phase Retrieval , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).

[163]  Rayan Saab,et al.  MEASUREMENTS: IMPROVED ROBUSTNESS VIA EIGENVECTOR-BASED ANGULAR SYNCHRONIZATION , 2022 .

[164]  Tie Zhou,et al.  On relaxed averaged alternating reflections (RAAR) algorithm for phase retrieval with structured illumination , 2016, 1607.02138.

[165]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[166]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[167]  J. Sanz Mathematical Considerations for the Problem of Fourier Transform Phase Retrieval from Magnitude , 1985 .

[168]  Thomas Strohmer,et al.  Regularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing , 2017, ArXiv.

[169]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[170]  G. Bianchi,et al.  THE SOLUTION OF THE COVARIOGRAM PROBLEM FOR PLANE C 2 + CONVEX BODIES , 2002 .

[171]  Hamootal Duadi,et al.  Digital Holography and Phase Retrieval , 2011 .

[172]  Yonina C. Eldar,et al.  Phase retrieval with masks using convex optimization , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[173]  Yuxin Chen,et al.  Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..

[174]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[175]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[176]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[177]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[178]  Richard Kueng,et al.  Low rank matrix recovery from Clifford orbits , 2016, ArXiv.

[179]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[180]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[181]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[182]  Palina Salanevich,et al.  Robust Phase Retrieval Algorithm for Time-Frequency Structured Measurements , 2016, SIAM J. Imaging Sci..

[183]  Stephan Antholzer,et al.  NETT: solving inverse problems with deep neural networks , 2018, Inverse Problems.

[184]  Veit Elser,et al.  Benchmark problems for phase retrieval , 2017, SIAM J. Imaging Sci..

[185]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[186]  Vladislav Voroninski,et al.  An Elementary Proof of Convex Phase Retrieval in the Natural Parameter Space via the Linear Program PhaseMax , 2016, ArXiv.

[187]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[188]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[189]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[190]  Jae S. Lim,et al.  Signal reconstruction from the short-time Fourier transform magnitude , 1982, ICASSP.

[191]  G. Bianchi,et al.  The Solution of the Covariogram Problem for Plane $\mathcal{C}^2_+$ Convex Bodies , 2002 .

[192]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[193]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[194]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[195]  Wen Huang,et al.  Solving PhaseLift by Low-rank Riemannian Optimization Methods , 2017, ICCS.

[196]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[197]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[198]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[199]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[200]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[201]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[202]  Richard G. Baraniuk,et al.  Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[203]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[204]  J. Corbett The pauli problem, state reconstruction and quantum-real numbers , 2006 .

[205]  Albert Fannjiang,et al.  Raster Grid Pathology and the Cure , 2018, Multiscale Model. Simul..

[206]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[207]  Yanjun Li,et al.  Identifiability in Blind Deconvolution With Subspace or Sparsity Constraints , 2015, IEEE Transactions on Information Theory.

[208]  Michel Verhaegen,et al.  Solving large-scale general phase retrieval problems via a sequence of convex relaxations. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.