Optimization of linear systems subject to bounded exogenous disturbances: The invariant ellipsoid technique

This survey covers a variety of results associated with control of systems subjected to arbitrary bounded exogenous disturbances. The method of invariant ellipsoids reduces the design of optimal controllers to finding the smallest invariant ellipsoid of the closed-loop dynamical system. The main tool of this approach is the linear matrix inequality technique. This simple yet versatile approach has high potential in extensions and generalizations; it is equally applicable to both the continuous and discrete time versions of the problems.

[1]  D. Luenberger An introduction to observers , 1971 .

[2]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[3]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[4]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[5]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[6]  V. Yakubovich A frequency theorem in control theory , 1973 .

[7]  W. Wonham,et al.  The internal model principle for linear multivariable regulators , 1975 .

[8]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[9]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[10]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Mathukumalli Vidyasagar,et al.  Optimal rejection of persistent bounded disturbances , 1986 .

[14]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[15]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[16]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[17]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[18]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[19]  Munther A. Dahleh,et al.  State feedback e 1 -optimal controllers can be dynamic , 1992 .

[20]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[21]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[22]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[23]  M. Dahleh,et al.  Does star norm capture l/sub 1/ norm? , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[24]  M. Sznaier,et al.  Persistent disturbance rejection via static-state feedback , 1995, IEEE Trans. Autom. Control..

[25]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[26]  K. Poolla,et al.  A linear matrix inequality approach to peak‐to‐peak gain minimization , 1996 .

[27]  B. N. Pshenichnyi,et al.  Minimal invariant sets of dynamic systems with bounded disturbances , 1996 .

[28]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[29]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[30]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[31]  Boris Polyak Convexity of Quadratic Transformations and Its Use in Control and Optimization , 1998 .

[32]  SYNTHESIS OF MULTIVARIABLE SYSTEMS OF PRESCRIBED ACCURACY. PART 1. USE OF PROCEDURES OF LQ-OPTIMIZATION , 1998 .

[33]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[34]  A. Jadbabaie,et al.  Robust, non-fragile and optimal controller design via linear matrix inequalities , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[35]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[36]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[37]  Munther A. Dahleh,et al.  Minimization of the worst case peak-to-peak gain via dynamic programming: state feedback case , 2000, IEEE Trans. Autom. Control..

[38]  W. Reinelt,et al.  Robust control of a two-mass-spring system subject to its input constraints , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[39]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[40]  Guang-Hong Yang,et al.  Nonfragile H∞ Output Feedback Controller Design for Linear Systems* , 2003 .

[41]  Eric Walter,et al.  Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..

[42]  Boris T. Polyak,et al.  On Convergence of External Ellipsoidal Approximations of the Reachability Domains of Discrete Dynamic Linear Systems , 2004 .

[43]  Boris T. Polyak,et al.  Special issue on the set membership modelling of uncertainties in dynamical systems , 2005 .

[44]  Boris T. Polyak,et al.  Hard Problems in Linear Control Theory: Possible Approaches to Solution , 2005 .

[45]  S. Gusev,et al.  Kalman-Popov-Yakubovich lemma and the S-procedure: A historical essay , 2006 .

[46]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[47]  B.T. Polyak,et al.  Rejection of Bounded Disturbances via Invariant Ellipsoids Technique , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[48]  Boris T. Polyak,et al.  The D-decomposition technique for linear matrix inequalities , 2006 .

[50]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[51]  V. N. Zhermolenko Maximum deviation of oscillating system of the second order with external and parametric disturbances , 2007 .

[52]  Explicit Formulae for Ellipsoids Approximating Reachable Sets , 2007 .

[53]  Boris T. Polyak,et al.  Rejection of bounded exogenous disturbances by the method of invariant ellipsoids , 2007 .

[54]  Pavel Shcherbakov,et al.  Extensions of Petersen's Lemma on Matrix Uncertainty , 2008 .

[55]  Pavel Shcherbakov,et al.  Petersen’s lemma on matrix uncertainty and its generalizations , 2008 .

[56]  Boris T. Polyak,et al.  Invariant Ellipsoids Approach to Robust Rejection of Persistent Disturbances , 2008 .

[57]  Design of robust stable controls for nonlinear objects , 2008 .

[58]  Boris T. Polyak,et al.  Suppression of bounded exogenous disturbances: Output feedback , 2008 .

[59]  Filtering with nonrandom noise: invariant ellipsoids technique , 2008 .

[60]  D. V. Balandin,et al.  Linear-quadratic and γ-optimal output control laws , 2008 .

[61]  Robust Stability and Synthesis of Nonlinear Discrete Control Systems under Uncertainty , 2008 .

[62]  Pavel Shcherbakov,et al.  Ellipsoidal approximations to attraction domains of linear systems with bounded control , 2009, 2009 American Control Conference.

[63]  M. Khlebnikov Robust filtering under nonrandom disturbances: The invariant ellipsoid approach , 2009 .

[64]  M. Khlebnikov A nonfragile controller for suppressing exogenous disturbances , 2010 .

[65]  M. Khlebnikov Suppression of bounded exogenous disturbances: A linear dynamic output controller , 2011 .