On the Size of the Universal Automaton of a Regular Language
暂无分享,去创建一个
[1] Sylvain Lombardy. On the Construction of Reversible Automata for Reversible Languages , 2002, ICALP.
[2] Igor Potapov,et al. On a Maximal NFA Without Mergible States , 2006, CSR.
[3] J. Sakarovitch. Eléments de théorie des automates , 2003 .
[4] Sheng Yu,et al. Mergible states in large NFA , 2005, Theor. Comput. Sci..
[5] Marek Chrobak,et al. Errata to: "finite automata and unary languages" , 2003 .
[6] Jean-Marc Champarnaud,et al. Erratum to "NFA reduction algorithms by means of regular inequalities" [TCS 327 (2004) 241-253] , 2005, Theor. Comput. Sci..
[7] J. Conway. Regular algebra and finite machines , 1971 .
[8] Marek Chrobak,et al. Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..
[9] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[10] Lucian Ilie,et al. Reducing NFAs by invariant equivalences , 2003 .
[11] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[12] Tao Jiang,et al. Minimal NFA Problems are Hard , 1991, SIAM J. Comput..
[13] Jacques Sakarovitch,et al. Star Height of Reversible Languages and Universal Automata , 2002, LATIN.
[14] Sergio Rajsbaum,et al. LATIN 2002: Theoretical Informatics , 2002, Lecture Notes in Computer Science.
[15] Douglas H. Wiedemann,et al. A computation of the eighth Dedekind number , 1991 .
[16] Jean-Marc Champarnaud,et al. NFA reduction algorithms by means of regular inequalities , 2004, Theor. Comput. Sci..