Rotation-locked 2,6-pyrido-allenophanes: characterization of all stereoisomers.

New 2,6-disubstituted pyrido-allenophanes with locked rotation of aromatic spacers were designed and synthesized. The synthesis was accomplished by Pd-catalyzed C(sp(2))-C(sp) Sonogashira cross-coupling reaction between 1,3-diethynylallene (DEA) and 2,6-dibromopyridine followed by an intermolecular ring closure. Because racemic DEA was employed, pyrido-allenophanes were obtained as mixtures of stereoisomers that were resolved by preparative HPLC. The conformational space of all these diastereoisomers was explored at the CAM-B3LYP/6-31+G*//AM1 level of theory. The isomers were characterized through their symmetry properties revealed in NMR, circular dichroism, and chiral stationary-phase HPLC experiments. X-ray diffraction was used to assign and to corroborate the configuration of several diastereoisomers. The unexpected encapsulation of two molecules of CHCl(3) in the crystal structures shows the potential of these conformationally hampered allenophanes as encapsulating hosts.

[1]  F. Diederich,et al.  Allenes in molecular materials. , 2012, Angewandte Chemie.

[2]  J. Wang,et al.  Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper(I): synthesis of trisubstituted allenes. , 2010, Angewandte Chemie.

[3]  Hiroko Tanaka,et al.  Enantioselective Cyclopropanation Reactions with Planar-Chiral Pyridinium Ylides: A Substituent Effect and a Remote Steric Effect , 2010 .

[4]  D. Ramaiah,et al.  Functional cyclophanes: promising hosts for optical biomolecular recognition. , 2010, Chemical Society reviews.

[5]  H. A. Stefani,et al.  Homocoupling Reactions of Alkynes, Alkenes and Alkyl Compounds , 2010 .

[6]  M. Pellegrin Contribution à l'étude de la réaction de Fittig , 2010 .

[7]  Ana G. Petrovic,et al.  Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.

[8]  Masafumi Yoshio,et al.  A columnar liquid-crystalline shape-persistent macrocycle having a nanosegregated structure. , 2009, Organic & biomolecular chemistry.

[9]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[10]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[11]  A. Navarro‐Vázquez,et al.  Chiral (2,5)pyrido[7(4)]allenoacetylenic cyclophanes: synthesis and characterization. , 2009, Chemistry.

[12]  Ling Zang,et al.  One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. , 2008, Accounts of chemical research.

[13]  R. Tykwinski,et al.  Shape‐Persistent Macrocycles Based on Acetylenic Scaffolding , 2008 .

[14]  F. Diederich,et al.  Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis , 2008 .

[15]  Mathieu Leclère,et al.  Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.

[16]  F. Diederich,et al.  Comprar Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis | François Diederich | 9783527318261 | Wiley , 2008 .

[17]  S. Hoeger Shape-Persistent Acetylenic Macrocycles for Ordered Systems , 2007 .

[18]  B. Lipshutz,et al.  Small but Effective: Copper Hydride Catalyzed Synthesis of α‐Hydroxyallenes , 2007 .

[19]  C. Deutsch,et al.  Klein aber effizient: Kupferhydrid‐katalysierte Synthese von α‐Hydroxyallenen , 2007 .

[20]  Jeffrey S. Moore,et al.  Formtreue Makrocyclen: Strukturen und Synthesen aus Arylen‐ und Ethinylen‐Bausteinen , 2006 .

[21]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[22]  R. Bader Pauli repulsions exist only in the eye of the beholder. , 2006, Chemistry.

[23]  M. Solà,et al.  A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. , 2006, Chemistry.

[24]  Takeshi Kawase Allenophan‐ und Allenoacetylen‐Makrocyclen: eine neue Klasse chiraler Cyclophane , 2005 .

[25]  T. Kawase Allenophane and allenoacetylenic macrocycles: a new class of chiral cyclophanes. , 2005, Angewandte Chemie.

[26]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[27]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[28]  A. G. Fallis,et al.  Acetylenic allenophanes: an asymmetric synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane. , 2005, Angewandte Chemie.

[29]  P. Baxter,et al.  Nitrogen heterocyclic carbon-rich materials: synthesis and spectroscopic properties of dehydropyridoannulene macrocycles. , 2005, The Journal of organic chemistry.

[30]  Matthew D. Clay and,et al.  Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .

[31]  N. Krause,et al.  Synthesis of allenes with organometallic reagents , 2004 .

[32]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[33]  Y. Yamaguchi,et al.  Synthesis and light-emitting characteristics of doughnut-shaped pi-electron systems. , 2004, Angewandte Chemie.

[34]  S. Gibson,et al.  [2.2]Paracyclophane derivatives in asymmetric catalysis. , 2003, Organic & biomolecular chemistry.

[35]  Friedrich Biegler-König,et al.  Update of the AIM2000‐Program for atoms in molecules , 2002, J. Comput. Chem..

[36]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[37]  R. Tykwinski,et al.  Functionalized macrocyclic ligands for use in supramolecular chemistry. , 2002, The Journal of organic chemistry.

[38]  F. Diederich,et al.  1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.

[39]  François Diederich,et al.  Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen , 2000 .

[40]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[41]  F. Vögtle,et al.  Synthesis of the First [34]Allenophane: 1,3,10,12,19,21,28,30‐Octamethyl[3.3.3.3]paracyclophan‐1,2,10,11,19,20,28,29‐octaene , 1999 .

[42]  Synthese des ersten [34]Allenophans: 1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaen , 1999 .

[43]  S. Höger Highly efficient methods for the preparation of shape‐persistent macrocyclics , 1999 .

[44]  D. Burton,et al.  A FACILE SYNTHESIS OF DIYNES , 1997 .

[45]  Jerzy Cioslowski,et al.  Steric Overcrowding in Perhalogenated Cyclohexanes, Dodecahedranes, and [60]Fulleranes , 1995 .

[46]  S. Denmeade,et al.  Efficient triple coupling reaction to produce a self-adjusting molecular cage , 1985 .

[47]  R. Rossi,et al.  A palladium-promoted route to 3-alkyl-4-(1-alkynyl)hexa-1,5-dyn-3-enes and/or 1,3-diynes , 1985 .

[48]  A. S. Hay Oxidative Coupling of Acetylenes. II1 , 1962 .

[49]  A. S. Hay Communications- Oxidative Coupling of Acetylenes , 1960 .

[50]  D. Cram,et al.  Macro Rings. I. Preparation and Spectra of the Paracyclophanes , 1951 .

[51]  C. Brown,et al.  Preparation and Structure of Di-p-Xylylene , 1949, Nature.

[52]  C. Glaser Beiträge zur Kenntniss des Acetenylbenzols , 1869 .

[53]  C. Glaser Untersuchungen über einige Derivate der Zimmtsäure , 1867 .