On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata

We study computational complexity of counting the fixed point configurations (FPs) in certain discrete dynamical systems. We prove that counting FPs in Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, respectively) is computationally intractable, even when each node is required to update according to a symmetric Boolean function. We also show that the problems of counting the garden of Eden configurations (GEs), as well as all transient configurations, are just as hard in that setting. Moreover, the hardness of enumerating FPs holds even in some severely restricted cases, such as when the nodes of an SDS or SyDS use only two different symmetric Boolean update rules, and when each node has a neighborhood size bounded by a small constant.

[1]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[2]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[3]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[4]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[5]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Reinhard Laubenbacher,et al.  Equivalence Relations on Finite Dynamical Systems , 2001, Adv. Appl. Math..

[7]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[8]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[9]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[10]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[11]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[12]  John N. Tsitsiklis,et al.  On the predictability of coupled automata: an allegory about chaos , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[13]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .

[14]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[15]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[16]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[17]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[18]  Eric Rémila,et al.  Simulations of graph automata , 1998 .

[19]  Harry B. Hunt,et al.  Theory of periodically specified problems: complexity and approximability , 1997, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[20]  Palash Sarkar,et al.  A brief history of cellular automata , 2000, CSUR.

[21]  Christian M. Reidys,et al.  On Acyclic Orientations and Sequential Dynamical Systems , 2001, Adv. Appl. Math..

[22]  K. Culík,et al.  Computation theoretic aspects of cellular automata , 1990 .

[23]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[24]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[25]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[26]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[27]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[28]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[29]  Zsuzsanna Róka One-way Cellular Automata on Cayley Graphs , 1993, FCT.

[30]  Bruno Durand Inversion of 2D Cellular Automata: Some Complexity Results , 1994, Theor. Comput. Sci..

[31]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[32]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[33]  Bruno Martin,et al.  A Geometrical Hierarchy on Graphs via Cellular Automata , 2002, Fundam. Informaticae.

[34]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[35]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[36]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[37]  Mohamed G. Gouda,et al.  Proving liveness for networks of communicating finite state machines , 1986, TOPL.

[38]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[39]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[40]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[41]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[42]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[43]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[44]  Bruno Durand A Random NP-Complete Problem for Inversion of 2D Cellular Automata , 1995, Theor. Comput. Sci..

[45]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[46]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[47]  Christian M. Reidys,et al.  Elements of a theory of simulation III: equivalence of SDS , 2001, Appl. Math. Comput..

[48]  Howard Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1990 .

[49]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[50]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[51]  Karel Culik,et al.  On the Limit Sets of Cellular Automata , 1989, SIAM J. Comput..

[52]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.