Dynamical modelling of the Galilean moons for the JUICE mission

[1]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[2]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[3]  J. Lieske Improved ephemerides of the Galilean satellites , 1980 .

[4]  S. Peale,et al.  The tides of Io , 1981 .

[5]  S. Synnott,et al.  Gravity field of the Saturnian system from Pioneer and Voyager tracking data , 1985 .

[6]  R. Greenberg Galilean satellites: Evolutionary paths in deep resonance , 1987 .

[7]  R. Malhotra Tidal origin of the Laplace resonance and the resurfacing of Ganymede , 1991 .

[8]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[9]  S. Tragesser,et al.  Modeling issues concerning motion of the Saturnian satellites , 1997 .

[10]  J. Lieske Galilean Satellite Ephemerides E5 , 1998 .

[11]  S. Peale Origin and evolution of the natural satellites , 1999 .

[12]  W. Goss,et al.  Sub-Milliarcsecond Precision of Pulsar Motions: Using In-Beam Calibrators with the VLBA , 1999, astro-ph/9903042.

[13]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[14]  V. Lainey,et al.  New estimation of usually neglected forces acting on Galilean system , 2001 .

[15]  R. Jacobsen The gravity field of the Jovian system and the orbits of the regular Jovian satellites , 2001 .

[16]  E. Pitjeva Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation , 2001 .

[17]  A Primordial Origin of the Laplace Relation Among the Galilean Satellites , 2002, Science.

[18]  B. Bills,et al.  A Solar System Survey of Forced Librations in Longitude , 2003 .

[19]  J. Anderson,et al.  Discovery of Mass Anomalies on Ganymede , 2004, Science.

[20]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[21]  J. Arlot,et al.  New accurate ephemerides for the Galilean satellites of Jupiter - II. Fitting the observations , 2004 .

[22]  V. Lainey,et al.  New accurate ephemerides for the Galilean satellites of Jupiter. I. Numerical integration of elaborated equations of motion , 2004 .

[23]  R. Jacobson The Orbits of the Major Saturnian Satellites and the Gravity Field of Saturn from Spacecraft and Earth-based Observations , 2004 .

[24]  B. Bills Free and forced obliquities of the Galilean satellites of Jupiter , 2005 .

[25]  L. Iorio,et al.  THE LENSE–THIRRING EFFECT IN THE JOVIAN SYSTEM OF THE GALILEAN SATELLITES AND ITS MEASURABILITY , 2005, gr-qc/0508112.

[26]  J. Anderson,et al.  Amalthea's Density Is Less Than That of Water , 2005, Science.

[27]  N. Emelyanov The mass of Himalia from the perturbations on other satellites , 2005 .

[28]  V. Lainey,et al.  New constraints on Io's and Jupiter's tidal dissipation , 2005 .

[29]  James S. Border,et al.  Angular Position Determination of Spacecraft by Radio Interferometry , 2007, Proceedings of the IEEE.

[30]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[31]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[32]  S. Mathis,et al.  Tidal Dynamics of Extended Bodies in Planetary Systems , 2007, 0711.1801.

[33]  W. Majid,et al.  Precision Spacecraft Tracking Using In-Beam Phase Referencing , 2008, 2008 IEEE Aerospace Conference.

[34]  J. Oberst,et al.  New astrometric observations of Deimos with the SRC on Mars Express , 2008 .

[35]  D. W. Parcher,et al.  Cassini Orbit Determination Results: January 2006 - End of Prime Mission , 2008 .

[36]  J. Arlot,et al.  The natural satellites ephemerides facility MULTI-SAT , 2008 .

[37]  A. Fienga,et al.  INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.

[38]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[39]  T. Hoolst,et al.  Jovian tidal dissipation from inner satellite dynamics , 2009 .

[40]  R. Greenberg The icy Jovian satellites after the Galileo mission , 2010 .

[41]  T. Brown,et al.  Observational detection of eclipses of J5 Amalthea by the Galilean satellites , 2010, 1104.0042.

[42]  A new astrometric reduction of photographic plates using the DAMIAN digitizer: improving the dynamics of the Jovian system , 2011 .

[43]  Ö. Karatekin,et al.  Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit , 2011 .

[44]  W. Folkner Uncertainties in the JPL planetary ephemeris , 2011 .

[45]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .

[46]  J. Arlot,et al.  The astrometry of the natural planetary satellites applied to their dynamics before and after Gaia , 2012 .

[47]  L. Gurvits,et al.  Spacecraft VLBI and Doppler tracking: algorithms and implementation , 2012, 1203.4408.

[48]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[49]  J. Arlot,et al.  Dynamical parameter determinations in Pluto’s system - Expected constraints from the New Horizons mission to Pluto , 2012 .

[50]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[51]  S. Debei,et al.  JANUS on the JUICE Mission: the Camera to Investigate Ganymede, Europa, Callisto and the Jovian System , 2013 .

[52]  A. Trinh,et al.  On the librations and tides of large icy satellites , 2013 .

[53]  D. W. Curkendall,et al.  Delta-DOR: The One-Nanoradian Navigation Measurement System of the Deep Space Network --- History, Architecture, and Componentry , 2013 .

[54]  L. Gurvits,et al.  Planetary Radio Interferometry and Doppler Experiment (PRIDE) for the JUICE mission , 2013 .

[55]  M. Mercolino,et al.  The X/Ka Celestial Reference Frame: Results from combined NASA-ESA baselines including Malargüe, Argentina , 2013 .

[56]  A. Verma,et al.  INPOP new release: INPOP10e , 2013, 1301.1510.

[57]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[58]  D. Vokrouhlický,et al.  ORBITAL PERTURBATIONS OF THE GALILEAN SATELLITES DURING PLANETARY ENCOUNTERS , 2014, 1405.1880.

[59]  L. Iess,et al.  The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do? , 2014 .

[60]  W. Folkner,et al.  Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft , 2014, 1402.6950.

[61]  A. McEwen,et al.  Io Volcano Observer (IVO): Budget travel to the outer Solar System , 2014 .

[62]  Z. Malkin,et al.  The ICRF-3: Status, plans, and progress on the next generation International Celestial Reference Frame , 2014, 1511.08035.

[63]  P. Visser,et al.  Phobos Laser Ranging: Numerical Geodesy Experiments for Martian System Science , 2014 .

[64]  Dayton L. Jones,et al.  ASTROMETRY OF CASSINI WITH THE VLBA TO IMPROVE THE SATURN EPHEMERIS , 2014, 1410.1067.

[65]  S. Mathis,et al.  Impact of the frequency dependence of tidal Q on the evolution of planetary systems , 2013, 1311.4810.

[66]  Lorenzo Bruzzone,et al.  JUICE: complementarity of the payload in adressing the mission science objectives , 2014 .

[67]  Luciano Iess,et al.  Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques , 2014 .

[68]  R. A. Jacobson,et al.  THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .

[69]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[70]  J. E. Riedel,et al.  Improved detection of tides at Europa with radiometric and optical tracking during flybys , 2015 .

[71]  V. Dehant,et al.  A new astrometric measurement and reduction of USNO photographic observations of Phobos and Deimos: 1967–1997 , 2015 .

[72]  D. Dirkx Interplanetary Laser Ranging. Analysis for Implementation in Planetary Science Missions , 2015 .

[73]  David E. Smith,et al.  Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour , 2015 .

[74]  R. Heller,et al.  The formation of the Galilean moons and Titan in the Grand Tack scenario , 2015, 1506.01024.

[75]  J. Laskar,et al.  Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology , 2016, Celestial Mechanics and Dynamical Astronomy.

[76]  A. R. Gomes-J'unior,et al.  Astrometry of mutual approximations between natural satellites. Application to the Galilean moons , 2016, 1605.06573.

[77]  W. Folkner,et al.  Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations , 2016 .

[78]  V. Lainey Quantification of tidal parameters from Solar System data , 2016, 1604.04184.