Axon voltage-clamp simulations. II. Double sucrose-gap method.

This is the second in a series of four papers on the simulation of the voltage clamp of cylindrical excitable cells. In this paper we evaluate the double sucrose-gap voltage-clamp technique for the squid and lobster giant axons. Using the Crank-Nicolson method of solution of the cable equations and differential equations representing the voltage clamp circuit we studied the effect of length of the sucrose gap "node" on the voltage profile along an excitable cell during a simulated voltage clamp. The voltage gradients along the region of the cell within the node produce "notches" in the current recording as well as changes in the magnitude of the sodium and potassium current for a given voltage step. Our results show that good voltage clamp control requires node lengths less than one-half the axon diameter.