A two-stage bid-price control for make-to-order revenue management
暂无分享,去创建一个
Thomas Spengler | Thomas Volling | Kai Wittek | Derya Eren Akyol | T. Spengler | D. Akyol | Thomas Volling | Kai Wittek
[1] Armin Scholl,et al. Planung im Spannungsfeld zwischen Informationsdynamik und zeitlichen Interdependenzen , 2003 .
[2] P. K. Richardson. Steel price determination in the European Community , 1998 .
[3] Stefan Rehkopf. Revenue Management-Konzepte zur Auftragsannahme bei kundenindividueller Produktion : am Beispiel der Eisen und Stahl erzeugenden Industrie , 2006 .
[4] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[5] P. Fishburn. Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .
[6] K. Talluri,et al. An Analysis of Bid-Price Controls for Network Revenue Management , 1998 .
[7] W. Lieberman. The Theory and Practice of Revenue Management , 2005 .
[8] Daniel Adelman,et al. Dynamic Bid Prices in Revenue Management , 2007, Oper. Res..
[9] James D. Dana,et al. New Directions in Revenue Management Research , 2008 .
[10] Sunder Kekre,et al. Risk-Based Integration of Strategic and Tactical Capacity Planning , 2004, Ann. Oper. Res..
[11] Victor DeMiguel,et al. What Multistage Stochastic Programming Can Do for Network Revenue Management , 2006 .
[12] Brad Warner,et al. Understanding Neural Networks as Statistical Tools , 1996 .
[13] Richard Freling,et al. Mathematical programming for network revenue management revisited , 2002, Eur. J. Oper. Res..
[14] I A Basheer,et al. Artificial neural networks: fundamentals, computing, design, and application. , 2000, Journal of microbiological methods.
[15] Robert Klein. Network capacity control using self-adjusting bid-prices , 2007, OR Spectr..
[16] Jochen Gönsch,et al. Dynamic Control Mechanisms for Revenue Management with Flexible Products , 2009, Comput. Oper. Res..
[17] Anton J. Kleywegt,et al. The Dynamic and Stochastic Knapsack Problem with Random Sized Items , 2001, Oper. Res..
[18] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..
[19] Dimitris Bertsimas,et al. Simulation-Based Booking Limits for Airline Revenue Management , 2005, Oper. Res..
[20] Lijian Chen,et al. Re-solving stochastic programming models for airline revenue management , 2010, Ann. Oper. Res..
[21] Julia L. Higle,et al. 16. A Stochastic Programming Model for Network Resource Utilization in the Presence of Multiclass Demand Uncertainty , 2005, Applications of Stochastic Programming.
[22] Herbert Meyr,et al. Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software , 2007 .
[23] Egill Másson,et al. Introduction to computation and learning in artificial neural networks , 1990 .
[24] A. Shapiro,et al. The Sample Average Approximation Method for Stochastic Programs with Integer Recourse , 2002 .
[25] Kevin Pak,et al. Revenue Management: New Features and Models , 2000 .
[26] K. Emich,et al. Airline Network Revenue Management by Multistage Stochastic Programming , 2009 .
[27] Herbert Meyr,et al. Revenue management and demand fulfillment: matching applications, models, and software , 2007, OR Spectr..
[28] Yves Chauvin,et al. Backpropagation: the basic theory , 1995 .
[29] Thomas Spengler,et al. Revenue management in make-to-order manufacturing—an application to the iron and steel industry , 2007, OR Spectr..
[30] Stefan Rehkopf,et al. Revenue Management Konzepte zur Entscheidungsunterstützung bei der Annahme von Kundenaufträgen , 2005 .
[31] Thomas Volling,et al. Revenue Management in Make-To-Order Manufacturing: Case Study of Capacity Control at ThyssenKrupp VDM , 2010 .
[32] Christiane Barz,et al. Risk-sensitive capacity control in revenue management , 2007, Math. Methods Oper. Res..
[33] Thomas P. Trappenberg,et al. Fundamentals of Computational Neuroscience , 2002 .