Search for new catalysts from a fundamental basis

[1]  J. Nørskov,et al.  The Ligand Effect: CO Desorption from Pt/Ru Catalysts , 2005 .

[2]  J. Nørskov,et al.  CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts , 2004 .

[3]  I. Chorkendorff,et al.  Combined high-pressure cell–ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry , 2004 .

[4]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[5]  H. Freund,et al.  Sum frequency generation and density functional studies of CO–H interaction and hydrogen bulk dissolution on Pd(1 1 1) , 2004 .

[6]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[7]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[8]  D. Goodman,et al.  Isocyanate formation in the catalytic reaction of CO + NO on Pd(111): an in situ infrared spectroscopic study at elevated pressures. , 2002, Journal of the American Chemical Society.

[9]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[10]  I. Chorkendorff,et al.  Improved Properties of the Catalytic Model System Ni/Ru(0001) , 2001 .

[11]  S. Dahl,et al.  Structure sensitivity of supported ruthenium catalysts for ammonia synthesis , 2000 .

[12]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[13]  J. Nørskov,et al.  Role of Steps in N 2 Activation on Ru(0001) , 1999 .

[14]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .

[15]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[16]  D. Thompsett,et al.  Catalysis in proton exchange membrane fuel cell technology , 1999 .

[17]  I. Chorkendorff,et al.  Increased dissociation probability of CH4 on Co/Cu(111) , 1998 .

[18]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[19]  J. Nørskov,et al.  Phase diagrams for surface alloys , 1997 .

[20]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[21]  Ib Chorkendorff,et al.  A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .

[22]  I. Chorkendorff,et al.  Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2 , 1994 .

[23]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[24]  B. D. Kay,et al.  Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces , 1987 .

[25]  D. Wayne Goodman,et al.  Model catalytic studies over metal single crystals , 1984 .

[26]  M. Boudart Catalysis by Supported Metals , 1969 .

[27]  H. Taylor A Theory of the Catalytic Surface , 1925 .

[28]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .