Search for new catalysts from a fundamental basis
暂无分享,去创建一个
Ib Chorkendorff | Martin Johansson | I. Chorkendorff | M. Johansson | O. Lytken | Michael A. E. Andersen | Ole Lytken | Jakob Engbæk | Gunver Nielsen | Nana Maria Pii Schumacher | Jakob S. Engbæk | N. Schumacher | G. Nielsen
[1] J. Nørskov,et al. The Ligand Effect: CO Desorption from Pt/Ru Catalysts , 2005 .
[2] J. Nørskov,et al. CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts , 2004 .
[3] I. Chorkendorff,et al. Combined high-pressure cell–ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry , 2004 .
[4] Thomas Bligaard,et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .
[5] H. Freund,et al. Sum frequency generation and density functional studies of CO–H interaction and hydrogen bulk dissolution on Pd(1 1 1) , 2004 .
[6] J. Nørskov,et al. Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .
[7] J. Nørskov,et al. Universality in Heterogeneous Catalysis , 2002 .
[8] D. Goodman,et al. Isocyanate formation in the catalytic reaction of CO + NO on Pd(111): an in situ infrared spectroscopic study at elevated pressures. , 2002, Journal of the American Chemical Society.
[9] Jens R. Rostrup-Nielsen,et al. Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .
[10] I. Chorkendorff,et al. Improved Properties of the Catalytic Model System Ni/Ru(0001) , 2001 .
[11] S. Dahl,et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis , 2000 .
[12] Jens K. Nørskov,et al. Theoretical surface science and catalysis—calculations and concepts , 2000 .
[13] J. Nørskov,et al. Role of Steps in N 2 Activation on Ru(0001) , 1999 .
[14] Brant A. Peppley,et al. Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .
[15] Brant A. Peppley,et al. Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .
[16] D. Thompsett,et al. Catalysis in proton exchange membrane fuel cell technology , 1999 .
[17] I. Chorkendorff,et al. Increased dissociation probability of CH4 on Co/Cu(111) , 1998 .
[18] Clausen,et al. Design of a surface alloy catalyst for steam reforming , 1998, Science.
[19] J. Nørskov,et al. Phase diagrams for surface alloys , 1997 .
[20] J. Nørskov,et al. Surface electronic structure and reactivity of transition and noble metals , 1997 .
[21] Ib Chorkendorff,et al. A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .
[22] I. Chorkendorff,et al. Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2 , 1994 .
[23] Charles T. Campbell,et al. A kinetic model of the water gas shift reaction , 1992 .
[24] B. D. Kay,et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces , 1987 .
[25] D. Wayne Goodman,et al. Model catalytic studies over metal single crystals , 1984 .
[26] M. Boudart. Catalysis by Supported Metals , 1969 .
[27] H. Taylor. A Theory of the Catalytic Surface , 1925 .
[28] P. Sabatier,et al. Hydrogénations et déshydrogénations par catalyse , 1911 .