Sliding window-based frequent pattern mining over data streams

[1]  Carson Kai-Sang Leung,et al.  DSTree: A Tree Structure for the Mining of Frequent Sets from Data Streams , 2006, Sixth International Conference on Data Mining (ICDM'06).

[2]  Arbee L. P. Chen,et al.  Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window , 2005, SDM.

[3]  R. Motwani,et al.  Chapter 31 – Approximate Frequency Counts over Data Streams , 2002, VLDB 2002.

[4]  Yelena Yesha,et al.  Data Mining: Next Generation Challenges and Future Directions , 2004 .

[5]  Carla E. Brodley,et al.  KDD-Cup 2000 organizers' report: peeling the onion , 2000, SKDD.

[6]  Ping-Yu Hsu,et al.  Algorithms for mining association rules in bag databases , 2004, Inf. Sci..

[7]  Won Suk Lee,et al.  Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.

[8]  Fei-yue Ye,et al.  New algorithm for mining frequent itemsets in sparse database , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[9]  Anthony J. T. Lee,et al.  An efficient algorithm for mining frequent inter-transaction patterns , 2007, Inf. Sci..

[10]  Carson Kai-Sang Leung,et al.  Efficient Mining of Constrained Frequent Patterns from Streams , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[11]  George Karypis,et al.  Finding Frequent Patterns Using Length-Decreasing Support Constraints , 2005, Data Mining and Knowledge Discovery.

[12]  David Maier,et al.  No pane, no gain: efficient evaluation of sliding-window aggregates over data streams , 2005, SGMD.

[13]  R. Gopalan,et al.  High Performance Frequent Patterns Extraction using Compressed FP-Tree , .

[14]  Yue-Shi Lee,et al.  Incremental and interactive mining of web traversal patterns , 2008, Inf. Sci..

[15]  Carlo Zaniolo,et al.  Verifying and Mining Frequent Patterns from Large Windows over Data Streams , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[16]  Suh-Yin Lee,et al.  An Efficient Algorithm for Mining Frequent Itemests over the Entire History of Data Streams , 2004 .

[17]  Hongjun Lu,et al.  False Positive or False Negative: Mining Frequent Itemsets from High Speed Transactional Data Streams , 2004, VLDB.

[18]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[19]  Chengqi Zhang,et al.  EDUA: An efficient algorithm for dynamic database mining , 2007, Inf. Sci..

[20]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[21]  Hui Xiong,et al.  Discovery of maximum length frequent itemsets , 2008, Inf. Sci..

[22]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[23]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[24]  Nan Jiang,et al.  Research issues in data stream association rule mining , 2006, SGMD.

[25]  Salvatore Orlando,et al.  Approximate mining of frequent patterns on streams , 2007, Intell. Data Anal..

[26]  Hong Chen,et al.  An Efficient Algorithm for Frequent Itemset Mining on Data Streams , 2006, Industrial Conference on Data Mining.

[27]  Feng-Hsu Wang,et al.  On discovery of soft associations with "most" fuzzy quantifier for item promotion applications , 2008, Inf. Sci..

[28]  Yuh-Jiuan Tsay,et al.  An efficient cluster and decomposition algorithm for mining association rules , 2004, Inf. Sci..

[29]  Mohammed J. Zaki,et al.  Efficient algorithms for mining closed itemsets and their lattice structure , 2005, IEEE Transactions on Knowledge and Data Engineering.

[30]  Tzung-Pei Hong,et al.  Flexible online association rule mining based on multidimensional pattern relations , 2006, Inf. Sci..

[31]  Young-Koo Lee,et al.  Efficient single-pass frequent pattern mining using a prefix-tree , 2009, Inf. Sci..

[32]  Guoqing Chen,et al.  Fuzzy association rules and the extended mining algorithms , 2002, Inf. Sci..

[33]  Young-Koo Lee,et al.  CP-Tree: A Tree Structure for Single-Pass Frequent Pattern Mining , 2008, PAKDD.

[34]  Hongjun Lu,et al.  A false negative approach to mining frequent itemsets from high speed transactional data streams , 2006, Inf. Sci..

[35]  Jing-Rung Yu,et al.  FIUT: A new method for mining frequent itemsets , 2009, Inf. Sci..

[36]  Jia-Ling Koh,et al.  An Efficient Approach for Maintaining Association Rules Based on Adjusting FP-Tree Structures1 , 2004, DASFAA.

[37]  Philip S. Yu,et al.  Catch the moment: maintaining closed frequent itemsets over a data stream sliding window , 2006, Knowledge and Information Systems.

[38]  Won Suk Lee,et al.  estWin: Online data stream mining of recent frequent itemsets by sliding window method , 2005, J. Inf. Sci..

[39]  Anthony J. T. Lee,et al.  Mining spatial association rules in image databases , 2007, Inf. Sci..

[40]  Li Shen,et al.  New Algorithms for Efficient Mining of Association Rules , 1999, Inf. Sci..

[41]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[42]  Jia-Ling Koh,et al.  An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams , 2006, DaWaK.

[43]  Suh-Yin Lee,et al.  Mining frequent itemsets over data streams using efficient window sliding techniques , 2009, Expert Syst. Appl..

[44]  Philip S. Yu,et al.  Mining Frequent Patterns in Data Streams at Multiple Time Granularities , 2002 .