Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

[1]  D. Cahill,et al.  Impact of silicon nitride thickness on the infrared sensitivity of silicon nitride-aluminum microcantilevers , 2012 .

[2]  Rohit Bhargava,et al.  Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation. , 2012, The Review of scientific instruments.

[3]  W. King,et al.  Thermomechanical Sensitivity of Microcantilevers in the Mid-Infrared Spectral Region , 2011 .

[4]  Chunguang Jin,et al.  Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. , 2008, Analytical chemistry.

[5]  L. A. Pinnaduwage,et al.  Identification and quantification of components in ternary vapor mixtures using a microelectromechanical-system-based electronic nose , 2008 .

[6]  Thomas Thundat,et al.  Trace explosive detection using photothermal deflection spectroscopy , 2008 .

[7]  Keith Aubin,et al.  Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. , 2008, Analytical chemistry.

[8]  C. Ziegler,et al.  A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures , 2006 .

[9]  Thomas Thundat,et al.  Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers , 2006 .

[10]  T. Brill,et al.  Vibrational Behavior of the −NO2 Group in Energetic Compounds , 2005, Applied spectroscopy.

[11]  T. Thundat,et al.  Desorption characteristics of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors. , 2004, Ultramicroscopy.

[12]  E. Zellers,et al.  Limits of recognition for simple vapor mixtures determined with a microsensor array. , 2004, Analytical chemistry.

[13]  N. Lavrik,et al.  Detection and differentiation of biological species using microcalorimetric spectroscopy. , 2003, Ultramicroscopy.

[14]  J. Yinon,et al.  Peer Reviewed: Detection of Explosives by Electronic Noses , 2003 .

[15]  Panos G. Datskos,et al.  Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices , 2001 .

[16]  Larry W. Burggraf,et al.  Photothermal spectroscopy using multilayer cantilever for chemical detection , 2000 .

[17]  P. S. Makashir,et al.  Spectroscopic and Thermal Studies on Pentaerythritol Tetranitrate (PETN) , 1999 .

[18]  W A Groves,et al.  Establishing a limit of recognition for a vapor sensor array. , 1998, Analytical chemistry.

[19]  I. R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part I: Group Frequency and Structural Class Membership , 1997 .

[20]  Ian R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part II: The Implementation of Neural, Fuzzy, and Statistical Models for Unsupervised Pattern Recognition , 1997 .

[21]  Panos G. Datskos,et al.  Remote optical detection using microcantilevers , 1996 .

[22]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[23]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[24]  F. Pristera,et al.  ANALYSIS OF EXPLOSIVES BY INFRARED SPECTROSCOPY , 1960 .

[25]  Andreas Hierlemann,et al.  Evaluation of multitransducer arrays for the determination of organic vapor mixtures. , 2008, Analytical chemistry.

[26]  J. Yinon,et al.  Detection of explosives by electronic noses , 2003 .

[27]  P. S. Makashir,et al.  Spectroscopic and Thermal Studies on 2,4,6-trinitro Toluene (TNT) , 1999 .

[28]  WM. CHAPPELL,et al.  Molecular Vibrations , 1879, Nature.