An immersed boundary method for the simulation of bubbles with varying shape

The paper presents a numerical method for the simulation of bubbles with variable shape in the framework of an immersed boundary method. The liquid-gas interface is described analytically by a series expansion in spherical harmonics. Such a representation of the interface is very accurate and robust and the error of the computed surface curvature is substantially smaller compared to a discrete representation of the surface by grid points. The shape of the bubble is computed by minimizing the local displacement energy of pressure and surface tension forces and is coupled to the continuous phase by adapting the Lagrangian surface mesh in each time step. This is done with the constraint of constant bubble volume exactly implemented. As a first step the bubbles are restricted to axisymmetric shapes. The resulting algorithm is thoroughly validated by several numerical tests and finally applied to freely rising bubbles with stationary and oscillatory shape as well. The computed bubble shapes are in very good agreement with experimental and numerical reference data.

[1]  J.A.M. Kuipers,et al.  On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers , 2011 .

[2]  Jacques Magnaudet,et al.  Wake-induced forces and torques on a zigzagging/spiralling bubble , 2006, Journal of Fluid Mechanics.

[3]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[4]  D. Broday,et al.  Motion of spheroidal particles in vertical shear flows , 1998 .

[5]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[6]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[7]  Richard J. Perkins,et al.  Shape Oscillations of Rising Bubbles , 1998 .

[8]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[9]  J. Magnaudet,et al.  Wake instability of a fixed spheroidal bubble , 2007, Journal of Fluid Mechanics.

[10]  Jochen Fröhlich,et al.  Influence of magnetic fields on the behavior of bubbles in liquid metals , 2013 .

[11]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[12]  Maximilian Emans Numerische Simulation des unterkühlten Blasensiedens in turbulenter Strömung , 2003 .

[13]  Ping Lin,et al.  Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method , 2008, J. Comput. Phys..

[14]  Eric Loth,et al.  Quasi-steady shape and drag of deformable bubbles and drops , 2008 .

[15]  Shape oscillations and path transition of bubbles rising in a model bubble column , 2006 .

[16]  J. Fröhlich,et al.  Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids , 2012, Journal of Fluid Mechanics.

[17]  Jan Vierendeels,et al.  A coupling algorithm for partitioned solvers applied to bubble and droplet dynamics , 2009 .

[18]  Mclaughlin Numerical Simulation of Bubble Motion in Water , 1996, Journal of colloid and interface science.

[19]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[20]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[21]  Jochen Fröhlich,et al.  A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method , 2015, J. Comput. Phys..

[22]  T. Kajishima,et al.  Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding , 2001 .

[23]  C. Zenger,et al.  An efficient method for the prediction of the motion of individual bubbles , 2005 .

[24]  Jochen Fröhlich,et al.  Numerical simulation of sediment transport in open channel flow , 2012 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Nhan Phan-Thien,et al.  Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[28]  Jochen Fröhlich,et al.  On the relevance of collision modeling for interface-resolving simulations of sediment transport in open channel flow , 2014 .

[29]  Joris Degroote,et al.  Bubble simulations with an interface tracking technique based on a partitioned fluid-structure interaction algorithm , 2010, J. Comput. Appl. Math..

[30]  B. Boersma,et al.  DNS of Turbulent Bubbly Downflow with a Coupled Level-Set/Volume-of-Fluid Method , 2015 .

[31]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[32]  Sven Eckert,et al.  Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field , 2005 .

[33]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[34]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[35]  Nasser Khalili,et al.  Curvature Computation on Free-Form 3-D Meshes at Multiple Scales , 2001, Comput. Vis. Image Underst..

[36]  Yuying Yan,et al.  A numerical study of the interfacial transport characteristics outside spheroidal bubbles and solids , 2003 .

[37]  A. K. Agrawal,et al.  Shape of liquid drops moving in liquid media , 1966 .

[38]  Gretar Tryggvason,et al.  Direct Numerical Simulations of Gas–Liquid Multiphase Flows: Preface , 2011 .

[39]  Christian Veldhuis,et al.  Shape oscillations on bubbles rising in clean and in tap water , 2008 .

[40]  E. Garboczi Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete , 2002 .

[41]  Jochen Fröhlich,et al.  Simulation of bubbly flow in a vertical turbulent channel , 2012 .

[42]  W. Wulff COMPUTATIONAL METHODS FOR MULTIPHASE FLOW , 1990 .

[43]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[44]  Jochen Fröhlich,et al.  Direct Numerical Simulations of spherical bubbles in vertical turbulent channel flow , 2015 .

[45]  D. Legendre,et al.  The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids , 2008 .

[46]  J. Fröhlich,et al.  On the pair correlation function in a bubble swarm , 2013 .

[47]  J. Fröhlich,et al.  Modeling and numerical approximations for bubbles in liquid metal , 2013 .

[48]  Jochen Fröhlich,et al.  Imposing the free-slip condition with a continuous forcing immersed boundary method , 2015, J. Comput. Phys..

[49]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[50]  Wei Shyy,et al.  Multigrid computations with the immersed boundary technique for multiphase flows , 2004 .

[51]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[52]  Martin E. Weber,et al.  Bubbles in viscous liquids: shapes, wakes and velocities , 1981, Journal of Fluid Mechanics.

[53]  Nikolaus A. Adams,et al.  On improving mass conservation properties of the hybrid particle-level-set method , 2008 .

[54]  Stephan Schwarz DNS OF SINGLE BUBBLE MOTION IN LIQUID METAL AND THE INFLUENCE OF A MAGNETIC FIELD , 2011 .

[55]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[56]  Takafumi Kawamura,et al.  Numerical simulation method to resolve interactions between bubbles and turbulence , 2002 .

[57]  Bryan R. Kerman,et al.  The release of air bubbles from an underwater nozzle , 1991 .

[58]  Jochen Fröhlich,et al.  Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field , 2014 .

[59]  Gretar Tryggvason,et al.  Direct Numerical Simulations of Gas–Liquid Multiphase Flows: Introduction , 2011 .

[60]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[61]  K. Spring Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review , 1986 .

[62]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[63]  F. Sotiropoulos,et al.  Immersed boundary methods for simulating fluid-structure interaction , 2014 .

[64]  Søren Knudsen Kær,et al.  Modelling the motion of cylindrical particles in a nonuniform flow , 2003 .

[65]  M. Shapiro,et al.  Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity , 1998, Journal of Fluid Mechanics.

[66]  T. Kajishima,et al.  Interaction between particle clusters and particle-induced turbulence , 2002 .

[67]  Fotis Sotiropoulos,et al.  Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies , 2008, J. Comput. Phys..

[68]  Gian Piero Celata,et al.  Terminal velocity of single bubbles in surface tension force dominant regime , 2002 .

[69]  Morteza Gharib,et al.  Experimental studies on the shape and path of small air bubbles rising in clean water , 2002 .

[70]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[71]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[72]  T. Schwager,et al.  Computational Granular Dynamics: Models and Algorithms , 2005 .

[73]  Jochen Fröhlich,et al.  Simulation of a bubble chain in a container of high aspect ratio exposed to a magnetic field , 2013 .

[74]  Jacques Magnaudet,et al.  An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics , 2007 .

[75]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[76]  G. Arfken Mathematical Methods for Physicists , 1967 .

[77]  Daniel Gaudlitz Numerische Untersuchung des Aufstiegsverhaltens von Gasblasen in Flüssigkeiten , 2008 .

[78]  J. Fröhlich,et al.  Packing spheres tightly: influence of mechanical stability on close-packed sphere structures. , 2012, Physical review letters.

[79]  Berend van Wachem,et al.  Modelling of gas–solid turbulent channel flow with non-spherical particles with large Stokes numbers , 2015 .

[80]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[81]  Elias Balaras,et al.  A moving-least-squares reconstruction for embedded-boundary formulations , 2009, J. Comput. Phys..

[82]  Jochen Fröhlich,et al.  Fluid–particle interaction in turbulent open channel flow with fully-resolved mobile beds , 2014 .

[83]  Brian L. Smith,et al.  A novel technique for including surface tension in PLIC-VOF methods , 2002 .

[84]  M. Shapiro,et al.  Particles in a shear flow near a solid wall : Effect of nonsphericity on forces and velocities , 1997 .

[85]  A. Schwab,et al.  HOW TO DRAW EULER ANGLES AND UTILIZE EULER PARAMETERS , 2006 .

[86]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .