A Low-Complexity Hybrid LDPC Code Encoder for IEEE 802.3an (10GBase-T) Ethernet

This paper presents a novel hybrid encoding method for encoding of low-density parity-check (LDPC) codes. The design approach is applied to design 10-Gigabit Ethernet transceivers over copper cables. For a specified encoding speed, the proposed method requires substantially lower complexity in terms of area and storage. Furthermore, this method is generic and can be adapted easily for other LDPC codes. One major advantage of this design is that it does not require column swapping and it maintains compatibility with optimized LDPC decoders. For a 10-Gigabit Ethernet transceiver which is compliant with the IEEE 802.3 an standard, the proposed sequential (5-Parallel) hybrid architecture has the following implementation properties: critical path: (log2(324) + 1)Txor + Tand, number of XOR gates: 11 056, number of and gates: 1620, and ROM storage: 104 976 bits (which can be minimized to 52 488 bits using additional hardware). This method achieves comparable critical path, and requires 74% gate area, 10% ROM storage as compared with a similar 10-Gigabit sequential (5-parallel) LDPC encoder design using only the G matrix multiplication method. Additionally the proposed method accesses fewer bits per cycle than the G matrix method which reduces power consumption by about 82%.

[1]  Paul Fortier,et al.  Encoder architecture with throughput over 10 Gbit/sec for quasi-cyclic LDPC codes , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[2]  Norbert Goertz,et al.  Systematic Modification of Parity-Check Matrices for Efficient Encoding of LDPC Codes , 2007, 2007 IEEE International Conference on Communications.

[3]  Shu Lin,et al.  A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols , 2003, IEEE Communications Letters.

[4]  Tong Zhang,et al.  Block-LDPC: a practical LDPC coding system design approach , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[5]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[6]  Tong Zhang,et al.  Joint code-encoder-decoder design for LDPC coding system VLSI implementation , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[7]  Tong Zhang,et al.  Joint (3,k)-regular LDPC code and decoder/encoder design , 2004, IEEE Transactions on Signal Processing.

[8]  Achilleas Anastasopoulos,et al.  A comparison between the sum-product and the min-sum iterative detection algorithms based on density evolution , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[9]  Frank R. Kschischang,et al.  Power Reduction Techniques for LDPC Decoders , 2008, IEEE Journal of Solid-State Circuits.

[10]  Z. Cai,et al.  Efficient encoding of IEEE 802.11n LDPC codes , 2006 .

[11]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  Anthony D. Fagan,et al.  A Versatile Variable Rate LDPC Codec Architecture , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  J. Tellado,et al.  (INVITED) 10GBASE-T for 10Gb/s full duplex ethernet LAN transmission over structured copper cabling , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  D.M. Gruenbacher,et al.  Implementation of a Flexible Encoder for Structured Low-Density Parity-Check Codes , 2007, 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[16]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[17]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[18]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[19]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[20]  Xin-Yu Shih,et al.  An 8.29 mm$^{2}$ 52 mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13 $\mu$m CMOS Process , 2008, IEEE Journal of Solid-State Circuits.

[21]  Wayne Luk,et al.  A flexible hardware encoder for low-density parity-check codes , 2004, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[22]  Shyh-Jye Jou,et al.  An LDPC Decoder Chip Based on Self-Routing Network for IEEE 802.16e Applications , 2008, IEEE Journal of Solid-State Circuits.

[23]  Samuel Dolinar,et al.  Encoders for block-circulant LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[24]  Frank R. Kschischang,et al.  Block-Interlaced LDPC Decoders With Reduced Interconnect Complexity , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  Jun Heo,et al.  Analysis of scaling soft information on low density parity check code , 2003 .