LARGE ECCENTRICITY, LOW MUTUAL INCLINATION: THE THREE-DIMENSIONAL ARCHITECTURE OF A HIERARCHICAL SYSTEM OF GIANT PLANETS

We establish the three-dimensional architecture of the Kepler-419 (previously KOI-1474) system to be eccentric yet with a low mutual inclination. Kepler-419b is a warm Jupiter at semi-major axis AU with a large eccentricity (e = 0.85) measured via the “photoeccentric effect.” It exhibits transit timing variations (TTVs) induced by the non-transiting Kepler-419c, which we uniquely constrain to be a moderately eccentric (e = 0.184 ± 0.002), hierarchically separated (a = 1.68 ± 0.03 AU) giant planet (7.3 ± 0.4 MJup). We combine 16 quarters of Kepler photometry, radial-velocity (RV) measurements from the HIgh Resolution Echelle Spectrometer on Keck, and improved stellar parameters that we derive from spectroscopy and asteroseismology. From the RVs, we measure the mass of the inner planet to be 2.5 ± 0.3 MJup and confirm its photometrically measured eccentricity, refining the value to e = 0.83 ± 0.01. The RV acceleration is consistent with the properties of the outer planet derived from TTVs. We find that despite their sizable eccentricities, the planets are coplanar to within degrees, and therefore the inner planet's large eccentricity and close-in orbit are unlikely to be the result of Kozai migration. Moreover, even over many secular cycles, the inner planet's periapse is most likely never small enough for tidal circularization. Finally, we present and measure a transit time and impact parameter from four simultaneous ground-based light curves from 1 m class telescopes, demonstrating the feasibility of ground-based follow-up of Kepler giant planets exhibiting large TTVs.

[1]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  R. Gilliland,et al.  LIMITS ON SURFACE GRAVITIES OF KEPLER PLANET-CANDIDATE HOST STARS FROM NON-DETECTION OF SOLAR-LIKE OSCILLATIONS , 2014, 1401.6324.

[3]  S. Tremaine,et al.  SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION , 2014, 1401.4457.

[4]  D. Kipping Characterizing Distant Worlds with Asterodensity Profiling , 2013, 1311.1170.

[5]  A. Cumming,et al.  SHEDDING LIGHT ON THE ECCENTRICITY VALLEY: GAP HEATING AND ECCENTRICITY EXCITATION OF GIANT PLANETS IN PROTOPLANETARY DISKS , 2013, 1310.8627.

[6]  A. Loeb,et al.  ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS , 2013, 1310.6044.

[7]  Extreme Orbital Evolution from Hierarchical Secular Coupling of Two Giant Planets , 2013, 1310.5048.

[8]  Howard Isaacson,et al.  Stellar Spin-Orbit Misalignment in a Multiplanet System , 2013, Science.

[9]  S. Dong,et al.  WARM JUPITERS NEED CLOSE “FRIENDS” FOR HIGH-ECCENTRICITY MIGRATION—A STRINGENT UPPER LIMIT ON THE PERTURBER'S SEPARATION , 2013, 1309.0011.

[10]  T. Mazeh,et al.  STELLAR ROTATION PERIODS OF THE KEPLER OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS , 2013, 1308.1845.

[11]  A. Morbidelli,et al.  Early dynamical instabilities in the giant planet systems , 2013, 1303.6062.

[12]  R. Dawson,et al.  GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET–PLANET INTERACTIONS , 2013, 1302.6244.

[13]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[14]  D. Hamilton,et al.  SECULAR ORBITAL EVOLUTION OF COMPACT PLANET SYSTEMS , 2013, 1302.1620.

[15]  N. Kaib,et al.  Planetary system disruption by Galactic perturbations to wide binary stars , 2013, Nature.

[16]  Yanqin Wu,et al.  DENSITY AND ECCENTRICITY OF KEPLER PLANETS , 2012, 1210.7810.

[17]  P. Armitage,et al.  A limit on eccentricity growth from global 3D simulations of disc-planet interactions , 2012, 1210.6035.

[18]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[19]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[20]  John C. Geary,et al.  Alignment of the stellar spin with the orbits of a three-planet system , 2012, Nature.

[21]  Y. Lithwick,et al.  EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA , 2012, 1207.4192.

[22]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[23]  J. Crepp,et al.  THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION , 2012, 1206.5579.

[24]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[25]  W. Farr,et al.  ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES , 2012, 1206.3529.

[26]  T. Morton AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES , 2012, 1206.1568.

[27]  L. Buchhave,et al.  The Detection and Characterization of a Nontransiting Planet by Transit Timing Variations , 2012, Science.

[28]  R. Dawson,et al.  THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS , 2012, 1203.5537.

[29]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[30]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[31]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[32]  S. Tremaine,et al.  SUPER-ECCENTRIC MIGRATING JUPITERS , 2011, 1110.1644.

[33]  S. Aigrain,et al.  Correction to: A simple method to estimate radial velocity variations due to stellar activity using photometry , 2011, Monthly Notices of the Royal Astronomical Society.

[34]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[35]  Jie Li,et al.  THE KEPLER-19 SYSTEM: A TRANSITING 2.2 R⊕ PLANET AND A SECOND PLANET DETECTED VIA TRANSIT TIMING VARIATIONS , 2011, 1109.1561.

[36]  S. Tremaine,et al.  THE STATISTICS OF MULTI-PLANET SYSTEMS , 2011, 1106.5403.

[37]  Avi Shporer,et al.  LONG-TERM TRANSIT TIMING MONITORING AND REFINED LIGHT CURVE PARAMETERS OF HAT-P-13b , 2011, 1105.5599.

[38]  P. Gaulme,et al.  PREDICTING THE DETECTABILITY OF OSCILLATIONS IN SOLAR-TYPE STARS OBSERVED BY KEPLER , 2011, 1103.0702.

[39]  Y. Lithwick,et al.  SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS , 2010, 1012.3475.

[40]  Douglas N. C. Lin,et al.  CONSEQUENCES OF THE EJECTION AND DISRUPTION OF GIANT PLANETS , 2010, 1012.2382.

[41]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[42]  T. Morton,et al.  DISCERNING EXOPLANET MIGRATION MODELS USING SPIN–ORBIT MEASUREMENTS , 2010, 1010.4025.

[43]  Hema Chandrasekaran,et al.  Presearch data conditioning in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[44]  R. Paul Butler,et al.  THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION , 2010, 1006.4244.

[45]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[46]  R. P. Butler,et al.  NEW OBSERVATIONAL CONSTRAINTS ON THE υ ANDROMEDAE SYSTEM WITH DATA FROM THE HUBBLE SPACE TELESCOPE AND HOBBY-EBERLY TELESCOPE , 2010 .

[47]  Jason T. Wright,et al.  THE CALIFORNIA PLANET SURVEY. I. FOUR NEW GIANT EXOPLANETS , 2010, 1003.3488.

[48]  M. R. Haas,et al.  OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE , 2010, 1001.0258.

[49]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[50]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[51]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[52]  A. Quillen The statistics of accelerations seen in radial velocity searches for planets , 2008, 0810.3679.

[53]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[54]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[55]  F. Rasio,et al.  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 PLANETARY SYSTEMS IN BINARIES. I. DYNAMICAL CLASSIFICATION , 2022 .

[56]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[57]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[58]  E. Ford,et al.  Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog , 2006, astro-ph/0607235.

[59]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[60]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[61]  Re'em Sari,et al.  Planet-Disk Symbiosis , 2003, astro-ph/0307107.

[62]  R. Malhotra,et al.  Secular dynamics of the three-body problem: application to the υ Andromedae planetary system , 2003, astro-ph/0307094.

[63]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[64]  E. Forgács-dajka,et al.  On the detectability of long period perturbations in close hierarchical triple stellar systems , 2003 .

[65]  R. Sari,et al.  Eccentricity Evolution for Planets in Gaseous Disks , 2002, astro-ph/0202462.

[66]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[67]  E. Chiang,et al.  Eccentricity Excitation and Apsidal Resonance Capture in the Planetary System υ Andromedae , 2002, astro-ph/0205273.

[68]  S. Tremaine,et al.  Apsidal Alignment in υ Andromedae , 2001, astro-ph/0105067.

[69]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[70]  M. Holman,et al.  Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions , 1998, astro-ph/9803340.

[71]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[72]  S. Mikkola Practical Symplectic Methods with Time Transformation for the Few-Body Problem , 1997 .

[73]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[74]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[75]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[76]  Supriya Chakrabarti,et al.  Astronomical data analysis from remote sites , 1988 .

[77]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[78]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .