Preconditioning of wavelet BEM by the incomplete Cholesky factorization

The present paper is dedicated to the preconditioning of boundary element matrices which are given in wavelet coordinates. We investigate the incomplete Cholesky factorization (ICF) for a pattern which includes also the coefficients of all off-diagonal bands associated with the level–level-interactions. The pattern is chosen in such a way that the ICF is computable in log-linear complexity. Numerical experiments are performed to quantify the effects of the proposed preconditioning.

[1]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[2]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[3]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[4]  Reinhold Schneider,et al.  Biorthogonal wavelet bases for the boundary element method , 2004 .

[5]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[6]  Christoph Schwab,et al.  Wavelet Galerkin BEM on Unstructured Meshes by Aggregation , 2002 .

[7]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[8]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[9]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[10]  Dieter Lasser,et al.  Grundlagen der geometrischen Datenverarbeitung , 1989 .

[11]  E. Stephan,et al.  Preconditioned minimum residual iteration for the h–p version of the coupled FEM/BEM with quasi‐uniform meshes , 1999 .

[12]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[13]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[14]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[15]  Reinhold Schneider,et al.  Wavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature , 2006, SIAM J. Sci. Comput..

[16]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[17]  Helmut Harbrecht,et al.  A Newton method for reconstructing non star-shaped domains inelectrical impedance tomography , 2009 .

[18]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[19]  Carsten Carstensen,et al.  Fast parallel solvers for symmetric boundary element domain decomposition equations , 1998 .

[20]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[21]  Reinhold Schneider,et al.  Multiscale preconditioning for the coupling of FEM-BEM , 2003, Numer. Linear Algebra Appl..

[22]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[23]  Helmut Harbrecht,et al.  A Newton method for Bernoulli’s free boundary problem in three dimensions , 2008, Computing.

[24]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[25]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[26]  Maharavo Randrianarivony,et al.  Wavelet BEM on molecular surfaces: solvent excluded surfaces , 2011, Computing.

[27]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[28]  Maharavo Randrianarivony,et al.  WAVELET BEM ON MOLECULAR SURFACES — PARAMETRIZATION AND IMPLEMENTATION , 2009 .

[29]  Wolfgang Dahmen,et al.  Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .

[30]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[31]  Maharavo Randrianarivony,et al.  From Computer Aided Design to wavelet BEM , 2009, Comput. Vis. Sci..

[32]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[33]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .

[34]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[35]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..