Modelling and simulation of the sea-landing of aerial vehicles using the Particle Finite Element Method

In this paper the Particle Finite Element Method (PFEM) is applied to the simulation of the sea-landing of an unmanned aerial vehicle (UAV). The problem of interest consists in modelling the impact of the vehicle against the water surface, analyzing the main kinematic and dynamic quantities (such as loads exerted upon the capsule at the moment of the impact). The PFEM, a methodology well-suited for free-surface flow simulation is used for modelling the water while a rigid body model is chosen for the vehicle. The vehicle under consideration is characterized by low weight. This leads to difficulties in modelling the fluid–structure interaction using standard Dirichlet–Neumann coupling. We apply a modified partitioned strategy introducing the interface Laplacian into the pressure Poisson's equation for obtaining a convergent FSI solution. The paper concludes with an industrial example of a vehicle sea-landing modelled using PFEM.

[1]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[2]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[3]  Peter Betsch,et al.  Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration , 2009 .

[4]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[5]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[6]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[7]  Riccardo Rossi,et al.  Migration of a generic multi-physics framework to HPC environments , 2013 .

[8]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[9]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[10]  Guillaume Houzeaux,et al.  The fixed-mesh ALE approach for the numerical approximation of flows in moving domains , 2009, J. Comput. Phys..

[11]  J. C. Simo,et al.  On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II , 1986 .

[12]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[13]  Eugenio Oñate,et al.  Lagrangian fe methods for coupled problems in fluid mechanics , 2010 .

[14]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[15]  E. Oñate,et al.  The extended Delaunay tessellation , 2003 .

[16]  M. Souli,et al.  ALE formulation for fluid–structure interaction problems , 2000 .

[17]  Eugenio Oñate,et al.  An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications , 2010 .

[18]  A. Ibrahimbegovic,et al.  Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .

[19]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .

[20]  J. Argyris An excursion into large rotations , 1982 .

[21]  E. Oñate,et al.  An efficient edge‐based level set finite element method for free surface flow problems , 2013 .

[22]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[23]  P. Betsch,et al.  Numerical integration of rigid body dynamics in terms of quaternions , 2008 .

[24]  Eugenio Oñate,et al.  Analysis of some partitioned algorithms for fluid‐structure interaction , 2010 .

[25]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[26]  Antonia Larese,et al.  Validation of the particle finite element method (PFEM) for simulation of free surface flows , 2008 .

[27]  G. Oger,et al.  Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..

[28]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[29]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[30]  Vladimir A. Chobotov Spacecraft Attitude Dynamics and Control , 1991 .

[31]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[32]  Kelly S. Carney,et al.  Crew Exploration Vehicle (CEV) Water Landing Simulation , 2007 .

[33]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[34]  E. Oñate,et al.  Mejora de la solución fuertemente acoplada de problemas FSI mediante una aproximación de la matriz tangente de presión , 2011 .

[35]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[36]  Eugenio Oñate,et al.  Possibilities of Finite Calculus in Computational Mechanics , 2001 .

[37]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[38]  M. Greenhow,et al.  Nonlinear-Free Surface Effects: Experiments and Theory , 1983 .