Evolutionary Multiobjective Optimization ( BC-EMO ) : A Genetic Algorithm Adapting to the Decision Maker

The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human–computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of “learning while optimizing,” through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.

[1]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[2]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[3]  Craig Boutilier,et al.  Minimax regret based elicitation of generalized additive utilities , 2007, UAI.

[4]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[5]  Minghe Sun,et al.  Interactive multiple objective programming using Tchebycheff programs and artificial neural networks , 2000, Comput. Oper. Res..

[6]  Andrea Passerini,et al.  Adapting to a Realistic Decision Maker: Experiments towards a Reactive Multi-objective Optimizer , 2010, LION.

[7]  Michael C. Burl,et al.  Active learning for directed exploration of complex systems , 2009, ICML '09.

[8]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[9]  B. Roy,et al.  A Theoretical Framework for Analysing the Notion of Relative Importance of Criteria , 1996 .

[10]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[11]  Hong-Zhong Huang,et al.  Intelligent interactive multiobjective optimization method and its application to reliability optimization , 2005 .

[12]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[13]  V. V. Podinovskii The Quantitative Importance of Criteria with Discrete First-Order Metric Scale , 2004 .

[14]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[15]  Robert F. Dell,et al.  An interactive MCDM weight space reduction method utilizing a tchebycheff utility function , 1990 .

[16]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[17]  Yaser S. Abu-Mostafa,et al.  Learning from Hints , 1994, J. Complex..

[18]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[19]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[20]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[21]  Stanley Zionts,et al.  An improved method for solving multiple criteria problems involving discrete alternatives , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  C. Cinel,et al.  P300-Based BCI Mouse With Genetically-Optimized Analogue Control , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[23]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[24]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[25]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[26]  Minghe Sun,et al.  Solving Multiple Objective Programming Problems Using Feed-Forward Artificial Neural Networks: The Interactive FFANN Procedure , 1996 .

[27]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[28]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[29]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[30]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[31]  Leena Tanner Selecting a text-processing system as a qualitative multiple criteria problem , 1991 .

[32]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[33]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[34]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[35]  Indraneel Das A preference ordering among various Pareto optimal alternatives , 1999 .

[36]  José Rui Figueira,et al.  Interactive Multiobjective Optimization Using a Set of Additive Value Functions , 2008, Multiobjective Optimization.

[37]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[38]  Yuesheng Xu,et al.  Universal Kernels , 2006, J. Mach. Learn. Res..

[39]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[40]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[42]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[43]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[44]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[45]  Garrison W. Greenwood,et al.  Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms , 2007, Eur. J. Oper. Res..

[46]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[47]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[48]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[49]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[50]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[51]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.