Super-Resolution Limit of the ESPRIT Algorithm

The problem of imaging point objects can be formulated as estimation of an unknown atomic measure from its <inline-formula> <tex-math notation="LaTeX">${M}+1$ </tex-math></inline-formula> consecutive noisy Fourier coefficients. The standard resolution of this inverse problem is <inline-formula> <tex-math notation="LaTeX">$1/{M}$ </tex-math></inline-formula> and super-resolution refers to the capability of resolving atoms at a higher resolution. When any two atoms are less than <inline-formula> <tex-math notation="LaTeX">$1/{M}$ </tex-math></inline-formula> apart, this recovery problem is highly challenging and many existing algorithms either cannot deal with this situation or require restrictive assumptions on the sign of the measure. ESPRIT is an efficient method which does not depend on the sign of the measure. This paper provides an explicit error bound on the support matching distance of ESPRIT in terms of the minimum singular value of Vandermonde matrices. When the support consists of multiple well-separated clumps and noise is sufficiently small, the support error by ESPRIT scales like <inline-formula> <tex-math notation="LaTeX">$\text {SRF}^{2\lambda -2} \times \text {Noise}$ </tex-math></inline-formula>, where the Super-Resolution Factor (SRF) governs the difficulty of the problem and <inline-formula> <tex-math notation="LaTeX">$\lambda $ </tex-math></inline-formula> is the cardinality of the largest clump. Our error bound matches the min-max rate of a special model with one clump of closely spaced atoms up to a factor of <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> in the small noise regime, and therefore establishes the near-optimality of ESPRIT. Our theory is validated by numerical experiments.

[1]  J. Vaaler,et al.  Some Extremal Functions in Fourier Analysis, III , 1985, 0809.4053.

[2]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[3]  J. Benedetto,et al.  Super-resolution by means of Beurling minimal extrapolation , 2016, Applied and Computational Harmonic Analysis.

[4]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[5]  Weilin Li,et al.  Elementary L∞ error estimates for super-resolution de-noising , 2017, ArXiv.

[6]  Wenjing Liao,et al.  MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution , 2015, IEEE Transactions on Signal Processing.

[7]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[8]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[9]  Weilin Li,et al.  Stable super-resolution limit and smallest singular value of restricted Fourier matrices , 2017, Applied and Computational Harmonic Analysis.

[10]  Laurent Demanet,et al.  Conditioning of Partial Nonuniform Fourier Matrices with Clustered Nodes , 2018, SIAM J. Matrix Anal. Appl..

[11]  H. Montgomery The analytic principle of the large sieve , 1978 .

[12]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  F. Li,et al.  Sensitivity analysis of DOA estimation algorithms to sensor errors , 1992 .

[14]  Weilin Li,et al.  Conditioning of restricted Fourier matrices and super-resolution of MUSIC , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).

[15]  Weilin Li Elementary L∞ error estimates for super-resolution de-noising , 2017, ArXiv.

[16]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[17]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[18]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[19]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[20]  Dmitry Batenkov,et al.  Super-resolution of near-colliding point sources , 2019, Information and Inference: A Journal of the IMA.

[21]  E. Matusiak,et al.  THE DONOHO - STARK UNCERTAINTY PRINCIPLE FOR A FINITE ABELIAN GROUP , 2004 .

[22]  Benjamin Recht,et al.  Superresolution without separation , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[23]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[24]  Albert Fannjiang,et al.  Compressive Sensing Theory for Optical Systems Described by a Continuous Model , 2015, 1507.00794.

[25]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[26]  A. Lee Swindlehurst,et al.  A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors: Part &-Multidimensional Algorithms , 1993 .

[27]  Thomas Kailath,et al.  On the sensitivity of the ESPRIT algorithm to non-identical subarrays , 1990 .

[28]  Stefan Kunis,et al.  On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes , 2018, Numerical Algorithms.

[29]  Céline Aubel,et al.  Performance of super-resolution methods in parameter estimation and system identification , 2016 .

[30]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[31]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[32]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[33]  Albert Fannjiang,et al.  Compressive Spectral Estimation with Single-Snapshot ESPRIT: Stability and Resolution , 2016, ArXiv.

[34]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[35]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[36]  Laurent Demanet,et al.  Stability of partial Fourier matrices with clustered nodes , 2018, ArXiv.

[37]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[38]  Helmut Bölcskei,et al.  Deterministic performance analysis of subspace methods for cisoid parameter estimation , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[39]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[40]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[41]  D. Donoho Superresolution via sparsity constraints , 1992 .

[42]  J. Vaaler SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .

[43]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[44]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[45]  A. Fannjiang,et al.  Compressive inverse scattering: I. High-frequency SIMO/MISO and MIMO measurements , 2009, 0906.5405.

[46]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[47]  John J. Benedetto,et al.  Weighted Fourier Inequalities: New Proofs and Generalizations , 2003 .