Super-Resolution Limit of the ESPRIT Algorithm
暂无分享,去创建一个
[1] J. Vaaler,et al. Some Extremal Functions in Fourier Analysis, III , 1985, 0809.4053.
[2] F. Gamboa,et al. Spike detection from inaccurate samplings , 2013, 1301.5873.
[3] J. Benedetto,et al. Super-resolution by means of Beurling minimal extrapolation , 2016, Applied and Computational Harmonic Analysis.
[4] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[5] Weilin Li,et al. Elementary L∞ error estimates for super-resolution de-noising , 2017, ArXiv.
[6] Wenjing Liao,et al. MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution , 2015, IEEE Transactions on Signal Processing.
[7] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[8] Thomas Strohmer,et al. Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..
[9] Weilin Li,et al. Stable super-resolution limit and smallest singular value of restricted Fourier matrices , 2017, Applied and Computational Harmonic Analysis.
[10] Laurent Demanet,et al. Conditioning of Partial Nonuniform Fourier Matrices with Clustered Nodes , 2018, SIAM J. Matrix Anal. Appl..
[11] H. Montgomery. The analytic principle of the large sieve , 1978 .
[12] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[13] F. Li,et al. Sensitivity analysis of DOA estimation algorithms to sensor errors , 1992 .
[14] Weilin Li,et al. Conditioning of restricted Fourier matrices and super-resolution of MUSIC , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).
[15] Weilin Li. Elementary L∞ error estimates for super-resolution de-noising , 2017, ArXiv.
[16] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[17] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[18] C. T. Fike,et al. Norms and exclusion theorems , 1960 .
[19] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[20] Dmitry Batenkov,et al. Super-resolution of near-colliding point sources , 2019, Information and Inference: A Journal of the IMA.
[21] E. Matusiak,et al. THE DONOHO - STARK UNCERTAINTY PRINCIPLE FOR A FINITE ABELIAN GROUP , 2004 .
[22] Benjamin Recht,et al. Superresolution without separation , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[23] Laurent Demanet,et al. The recoverability limit for superresolution via sparsity , 2015, ArXiv.
[24] Albert Fannjiang,et al. Compressive Sensing Theory for Optical Systems Described by a Continuous Model , 2015, 1507.00794.
[25] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[26] A. Lee Swindlehurst,et al. A Performance Analysis of Subspace-Based Methods in the Presence of Model Errors: Part &-Multidimensional Algorithms , 1993 .
[27] Thomas Kailath,et al. On the sensitivity of the ESPRIT algorithm to non-identical subarrays , 1990 .
[28] Stefan Kunis,et al. On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes , 2018, Numerical Algorithms.
[29] Céline Aubel,et al. Performance of super-resolution methods in parameter estimation and system identification , 2016 .
[30] A. Lee Swindlehurst,et al. A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .
[31] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[32] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[33] Albert Fannjiang,et al. Compressive Spectral Estimation with Single-Snapshot ESPRIT: Stability and Resolution , 2016, ArXiv.
[34] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.
[35] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[36] Laurent Demanet,et al. Stability of partial Fourier matrices with clustered nodes , 2018, ArXiv.
[37] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[38] Helmut Bölcskei,et al. Deterministic performance analysis of subspace methods for cisoid parameter estimation , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[39] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[40] Ankur Moitra,et al. Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.
[41] D. Donoho. Superresolution via sparsity constraints , 1992 .
[42] J. Vaaler. SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .
[43] HansenPer Christian. The truncated SVD as a method for regularization , 1987 .
[44] Emmanuel J. Candès,et al. Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..
[45] A. Fannjiang,et al. Compressive inverse scattering: I. High-frequency SIMO/MISO and MIMO measurements , 2009, 0906.5405.
[46] G. Folland,et al. The uncertainty principle: A mathematical survey , 1997 .
[47] John J. Benedetto,et al. Weighted Fourier Inequalities: New Proofs and Generalizations , 2003 .