A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov's excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual methods. For instance, through the choices of a dual smoothing strategy and a center point, our framework subsumes decomposition algorithms, augmented Lagrangian as well as the alternating direction method-of-multipliers methods as its special cases, and provides optimal convergence rates on the primal objective residual as well as the primal feasibility gap of the iterates for all.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[4]  A. Auslender Optimisation : méthodes numériques , 1976 .

[5]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[6]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[7]  Jacob Ponstein Convexity and Duality in Optimization , 1985 .

[8]  R. Tyrrell Rockafellar Monotropic Programming: A Generalization of Linear Programming and Network Programming , 1985 .

[9]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[10]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[11]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[12]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[13]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[16]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[17]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[18]  O. SIAMJ.,et al.  PROX-METHOD WITH RATE OF CONVERGENCE O(1/t) FOR VARIATIONAL INEQUALITIES WITH LIPSCHITZ CONTINUOUS MONOTONE OPERATORS AND SMOOTH CONVEX-CONCAVE SADDLE POINT PROBLEMS∗ , 2004 .

[19]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[20]  Abdelouahed Hamdi,et al.  Two-level primal-dual proximal decomposition technique to solve large scale optimization problems , 2005, Appl. Math. Comput..

[21]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[22]  Yurii Nesterov,et al.  Excessive Gap Technique in Nonsmooth Convex Minimization , 2005, SIAM J. Optim..

[23]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[24]  Abdelouahed Hamdi,et al.  Decomposition for structured convex programs with smooth multiplier methods , 2005, Appl. Math. Comput..

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[27]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[28]  Yurii Nesterov,et al.  Dual extrapolation and its applications to solving variational inequalities and related problems , 2003, Math. Program..

[29]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[30]  Rayan Saab,et al.  Sparco: A Testing Framework for Sparse Reconstruction , 2007 .

[31]  A. Nemirovski,et al.  Interior-point methods for optimization , 2008, Acta Numerica.

[32]  Johan A. K. Suykens,et al.  Application of a Smoothing Technique to Decomposition in Convex Optimization , 2008, IEEE Transactions on Automatic Control.

[33]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[34]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[35]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[36]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[37]  T. Chan,et al.  Primal dual algorithms for convex models and applications to image restoration, registration and nonlocal inpainting , 2010 .

[38]  A. Willsky,et al.  Latent variable graphical model selection via convex optimization , 2010 .

[39]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[40]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[41]  Yurii Nesterov,et al.  Barrier subgradient method , 2011, Math. Program..

[42]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[43]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[44]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[45]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[46]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[47]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .

[48]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[49]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[50]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[51]  Kim-Chuan Toh,et al.  On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .

[52]  Amir Beck,et al.  On the Solution of the GPS Localization and Circle Fitting Problems , 2012, SIAM J. Optim..

[53]  Dinh Quoc Tran,et al.  Combining Lagrangian decomposition and excessive gap smoothing technique for solving large-scale separable convex optimization problems , 2011, Comput. Optim. Appl..

[54]  Roman A. Polyak,et al.  Dual fast projected gradient method for quadratic programming , 2013, Optim. Lett..

[55]  Alexander G. Gray,et al.  Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[56]  Xiaoming Yuan,et al.  Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems , 2013, 1305.0546.

[57]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[58]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[59]  Stephen P. Boyd,et al.  A Splitting Method for Optimal Control , 2013, IEEE Transactions on Control Systems Technology.

[60]  Shiqian Ma,et al.  Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection , 2012, Neural Computation.

[61]  Michael Unser,et al.  Poisson Image Reconstruction With Hessian Schatten-Norm Regularization , 2013, IEEE Transactions on Image Processing.

[62]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[63]  Ion Necoara,et al.  Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC , 2013, SIAM J. Control. Optim..

[64]  Marc Teboulle,et al.  Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..

[65]  Marc Teboulle,et al.  A fast dual proximal gradient algorithm for convex minimization and applications , 2014, Oper. Res. Lett..

[66]  M. Wainwright Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues , 2014 .

[67]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[68]  Volkan Cevher,et al.  Convexity in Source Separation : Models, geometry, and algorithms , 2013, IEEE Signal Processing Magazine.

[69]  Arindam Banerjee,et al.  Bregman Alternating Direction Method of Multipliers , 2013, NIPS.

[70]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[71]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[72]  Yunmei Chen,et al.  An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..

[73]  Volkan Cevher,et al.  Composite self-concordant minimization , 2013, J. Mach. Learn. Res..

[74]  Renato D. C. Monteiro,et al.  Iteration-complexity of first-order augmented Lagrangian methods for convex programming , 2015, Mathematical Programming.

[75]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..