Spatial updating in monkey superior colliculus in the absence of the forebrain commissures: dissociation between superficial and intermediate layers.

In previous studies, we demonstrated that the forebrain commissures are the primary pathway for remapping from one hemifield to the other. Nonetheless, remapping in lateral intraparietal cortex (LIP) across hemifield is still present in split brain monkeys. This finding indicates that a subcortical structure must contribute to remapping. The primary goal of the current study was to characterize remapping activity in the superior colliculus in intact and split brain monkeys. We recorded neurons in both the superficial and intermediate layers of the SC. We found that across-hemifield remapping was reduced in magnitude and delayed compared with within-hemifield remapping in the intermediate layers of the SC in split brain monkeys. These results mirror our previous findings in area LIP. In contrast, we found no difference in the magnitude or latency for within- compared with across-hemifield remapping in the superficial layers. At the behavioral level, we compared the performance of the monkeys on two conditions of a double-step task. When the second target remained within a single hemifield, performance remained accurate. When the second target had to be updated across hemifields, the split brain monkeys' performance was impaired. Remapping activity in the intermediate layers was correlated with the accuracy and latency of the second saccade during the across-hemifield trials. Remapping in the superficial layers was correlated with latency of the second saccade during the within- and across-hemifield trials. The differences between the layers suggest that different circuits underlie remapping in the superficial and intermediate layers of the superior colliculus.

[1]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. , 1972, Journal of neurophysiology.

[2]  M. Cynader,et al.  Receptive-field organization of monkey superior colliculus. , 1972, Journal of neurophysiology.

[3]  M. Cynader,et al.  Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. , 1974, Journal of neurophysiology.

[4]  S. Edwards Autoradiographic studies of the projections of the midbrain reticular formation: Descending projections of nucleus cuneiformis , 1975, The Journal of comparative neurology.

[5]  K. E. Webster,et al.  The organisation of the spinotectal projection. An experimental study in the rat , 1975, The Journal of comparative neurology.

[6]  B L Finlay,et al.  Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. , 1976, Journal of neurophysiology.

[7]  R. Wurtz,et al.  Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. , 1976, Journal of neurophysiology.

[8]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[9]  A. Gibson,et al.  Visual cells in the pontine nuclei of the cat. , 1976, The Journal of physiology.

[10]  R. Wurtz,et al.  Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. , 1976, Journal of neurophysiology.

[11]  P. E. Hallett,et al.  Saccadic eye movements to flashed targets , 1976, Vision Research.

[12]  S B Edwards,et al.  The commissural projection of the superior colliculus in the cat , 1977, The Journal of comparative neurology.

[13]  R. Marrocco,et al.  Monkey superior colliculus: properties of single cells and their afferent inputs. , 1977, Journal of neurophysiology.

[14]  M. Carpenter,et al.  Nigrotectal projections in the monkey: An autoradiographic study , 1977, Brain Research.

[15]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[16]  B J Richmond,et al.  Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. , 1980, Journal of neurophysiology.

[17]  M Glickstein,et al.  Visual pontocerebellar projections in the cat. , 1980, Journal of neurophysiology.

[18]  L E Mays,et al.  Saccades are spatially, not retinocentrically, coded. , 1980, Science.

[19]  Paolo Maria Rossini,et al.  Subject Index Vol. 43, 1980 , 1980 .

[20]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[21]  A. Gibson,et al.  Corticopontine visual projections in macaque monkeys , 1980, The Journal of comparative neurology.

[22]  J D Holtzman,et al.  Dissociation of spatial information for stimulus localization and the control of attention. , 1981, Brain : a journal of neurology.

[23]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[24]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[25]  Jeffrey D. Holtzman,et al.  Interactions between cortical and subcortical visual areas: Evidence from human commissurotomy patients , 1984, Vision Research.

[26]  G. Krauthamer,et al.  Organization of the intercollicular pathway in rat , 1984, Brain Research.

[27]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[28]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[29]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[30]  Stig Bengmark,et al.  An Experimental Study in the Rat , 1986 .

[31]  A K Moschovakis,et al.  Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. , 1988, Journal of neurophysiology.

[32]  A. Rosenquist,et al.  Recovery from cortical blindness mediated by destruction of nontectotectal fibers in the commissure of the superior colliculus in the cat , 1989, The Journal of comparative neurology.

[33]  D. B. Bender,et al.  Comparison of saccadic eye movements in humans and macaques to single-step and double-step target movements , 1989, Vision Research.

[34]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[35]  P. Reuter-Lorenz,et al.  Orienting Attention across the Vertical Meridian: Evidence from Callosotomy Patients , 1990, Journal of Cognitive Neuroscience.

[36]  A. Rosenquist,et al.  Ibotenic acid lesions of the lateral substantia nigra restore visual orientation behavior in the hemianopic cat , 1990, The Journal of comparative neurology.

[37]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[38]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[39]  Guy A. Orban,et al.  Hemispheric lateralization in rhesus monkeys can be task-dependent , 1994, Neuropsychologia.

[40]  A. Opstal,et al.  Influence of eye position on activity in monkey superior colliculus. , 1995, Journal of neurophysiology.

[41]  Michael C. Corballis,et al.  Visual integration in the split brain , 1995, Neuropsychologia.

[42]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[44]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[45]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[46]  M. Behan,et al.  Spatial distribution of tectotectal connections in the cat. , 1996, Progress in brain research.

[47]  M. Behan,et al.  Intrinsic circuitry in the deep layers of the cat superior colliculus , 1996, Visual Neuroscience.

[48]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[49]  R. Wurtz,et al.  Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. , 1997, Journal of neurophysiology.

[50]  A J Van Opstal,et al.  Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. , 1997, Journal of neurophysiology.

[51]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[52]  M. Shadlen,et al.  Exploring the Neurophysiology of Decisions , 1998, Neuron.

[53]  M. A. Basso,et al.  Modulation of Neuronal Activity in Superior Colliculus by Changes in Target Probability , 1998, The Journal of Neuroscience.

[54]  P. May,et al.  Comparison of the distribution and somatodendritic morphology of tectotectal neurons in the cat and monkey , 1998, Visual Neuroscience.

[55]  P. Goldman-Rakic,et al.  Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. , 1998, Journal of neurophysiology.

[56]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[57]  E. Olivier,et al.  Evidence for glutamatergic tectotectal neurons in the cat superior colliculus: a comparison with GABAergic tectotectal neurons , 2000, The European journal of neuroscience.

[58]  R. Wurtz,et al.  Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. , 2000, Journal of neurophysiology.

[59]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[60]  Dottie M. Clower,et al.  The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum , 2001, The Journal of Neuroscience.

[61]  K. Hoffmann,et al.  Cortical input to the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) in macaques: a retrograde tracing study. , 2001, Cerebral cortex.

[62]  R. Romo,et al.  Touch and go: decision-making mechanisms in somatosensation. , 2001, Annual review of neuroscience.

[63]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. II. Memory responses. , 2001, Journal of neurophysiology.

[64]  P. Glimcher Making choices: the neurophysiology of visual-saccadic decision making , 2001, Trends in Neurosciences.

[65]  G. Leichnetz Connections of the medial posterior parietal cortex (area 7m) in the monkey , 2001, The Anatomical record.

[66]  Jeffrey D. Schall,et al.  Neural basis of deciding, choosing and acting , 2001, Nature Reviews Neuroscience.

[67]  W. C. Hall,et al.  Excitatory and Inhibitory Circuitry in the Superficial Gray Layer of the Superior Colliculus , 2001, The Journal of Neuroscience.

[68]  R. Wurtz,et al.  Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. , 2001, Journal of neurophysiology.

[69]  J. Gold,et al.  Banburismus and the Brain Decoding the Relationship between Sensory Stimuli, Decisions, and Reward , 2002, Neuron.

[70]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  W. Brown,et al.  Spatial attention in agenesis of the corpus callosum: shifting attention between visual fields , 2002, Neuropsychologia.

[72]  R. Wurtz,et al.  Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. , 2002, Journal of neurophysiology.

[73]  T. Isa Intrinsic processing in the mammalian superior colliculus , 2002, Current Opinion in Neurobiology.

[74]  S. Clarke,et al.  Commissural connections of human superior colliculus , 2002, Neuroscience.

[75]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[76]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[77]  Silvia Savazzi,et al.  The superior colliculus subserves interhemispheric neural summation in both normals and patients with a total section or agenesis of the corpus callosum , 2004, Neuropsychologia.

[78]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[79]  A. Murthy,et al.  Programming of double-step saccade sequences: Modulation by cognitive control , 2004, Vision Research.

[80]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[81]  A John Van Opstal,et al.  Gaze orienting in dynamic visual double steps. , 2005, Journal of neurophysiology.

[82]  R. Berman,et al.  Dynamic circuitry for updating spatial representations. I. Behavioral evidence for interhemispheric transfer in the split-brain macaque. , 2005, Journal of neurophysiology.

[83]  Jennifer J. Pokorny,et al.  Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys , 2005, The European journal of neuroscience.

[84]  Stephanie Clarke,et al.  Intrinsic connectivity of human superior colliculus , 2005, Experimental Brain Research.

[85]  R. Berman,et al.  Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque. , 2005, Journal of neurophysiology.

[86]  C. Colby,et al.  Spatial updating in area LIP is independent of saccade direction. , 2006, Journal of neurophysiology.

[87]  T. Vilis,et al.  Directional selectivity of BOLD activity in human posterior parietal cortex for memory-guided double-step saccades. , 2006, Journal of neurophysiology.

[88]  J. Lynch,et al.  Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. , 2006, Progress in brain research.

[89]  W. C. Hall,et al.  An In Vitro Study of Horizontal Connections in the Intermediate Layer of the Superior Colliculus , 2006, The Journal of Neuroscience.

[90]  M. Campos,et al.  Effects of eye position upon activity of neurons in macaque superior colliculus. , 2006, Journal of neurophysiology.

[91]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[92]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[93]  R. Berman,et al.  Dynamic circuitry for updating spatial representations. III. From neurons to behavior. , 2007, Journal of neurophysiology.

[94]  Carlo Alberto Marzi,et al.  Interhemispheric transfer following callosotomy in humans: Role of the superior colliculus , 2007, Neuropsychologia.

[95]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[96]  Ping Liu,et al.  Context-dependent effects of substantia nigra stimulation on eye movements. , 2007, Journal of neurophysiology.

[97]  Tadashi Isa,et al.  Identity of a pathway for saccadic suppression , 2007, Proceedings of the National Academy of Sciences.

[98]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[99]  Marc A Sommer,et al.  Neuronal adaptation caused by sequential visual stimulation in the frontal eye field. , 2008, Journal of neurophysiology.

[100]  M. A. Basso,et al.  Substantia nigra stimulation influences monkey superior colliculus neuronal activity bilaterally. , 2008, Journal of neurophysiology.

[101]  Stefan Everling,et al.  Monkey Prefrontal Cortical Pyramidal and Putative Interneurons Exhibit Differential Patterns of Activity Between Prosaccade and Antisaccade Tasks , 2009, The Journal of Neuroscience.

[102]  M. Iacoboni,et al.  Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum , 2009, Neuropsychologia.

[103]  Benoit Brisson,et al.  The attentional blink within and across the hemispheres: Evidence from a patient with a complete section of the corpus callosum , 2009, Biological Psychology.

[104]  R. Berman,et al.  Attention and active vision , 2009, Vision Research.