Reprint of: A conservative multi-tracer transport scheme for spectral-element spherical grids

Atmospheric models used for practical climate simulation must be capable handling the transport of hundreds of tracers. For computational efficiency conservative multi-tracer semi-Lagrangian type transport schemes are appropriate. Global models based on high-order Galerkin approach employ highly non-uniform spectral-element grids, and semi-Lagrangian transport is a challenge on those grids. A conservative semi-Lagrangian scheme (SPELT - SPectral-Element Lagrangian Transport) employing a multi-moment compact reconstruction procedure is developed for non-uniform quadrilateral grids. The scheme is based on a characteristic semi-Lagrangian method that avoids complex and expensive upstream area computations. The SPELT scheme has been implemented in the High-Order Method Modeling Environment (HOMME), which is based on a cubed-sphere grid with spectral-element spatial discretization. Additionally, we show the (strong) scalability and multi-tracer efficiency using several benchmark tests. The SPELT solution can be made monotonic (positivity preserving) by combining the flux-corrected transport algorithm, which is demonstrated on a uniform resolution grid. In particular, SPELT can be efficiently used for non-uniform grids and provides accurate and stable results for high-resolution meshes.

[1]  Stephen J. Thomas,et al.  A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid , 2007 .

[2]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[3]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[4]  Peter H. Lauritzen,et al.  A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid , 2011, J. Comput. Phys..

[5]  William M. Putman,et al.  A Finite-Volume Dynamical Core on the Cubed-Sphere Grid , 2009 .

[6]  Christoph Erath,et al.  Integrating a scalable and effcient semi-Lagrangian multi-tracer transport scheme in HOMME , 2012, ICCS.

[7]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[8]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[9]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[10]  Rodolfo Bermejo,et al.  The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes , 1992 .

[11]  Peter H. Lauritzen,et al.  A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..

[12]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[13]  Christoph Erath,et al.  On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere , 2013 .

[14]  Xingliang Li,et al.  A multi-moment transport model on cubed-sphere grid , 2011 .

[15]  Feng Xiao,et al.  Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows , 2006, J. Comput. Phys..

[16]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[17]  Mark A. Taylor,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..

[18]  Jing-Mei Qiu,et al.  A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .

[19]  Matthew R. Norman,et al.  A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics , 2011, J. Comput. Phys..

[20]  Dale R. Durran,et al.  Selective monotonicity preservation in scalar advection , 2008, J. Comput. Phys..

[21]  Ramachandran D. Nair,et al.  The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .

[22]  B. P. Leonard,et al.  Conservative Explicit Unrestricted-Time-Step Multidimensional Constancy-Preserving Advection Schemes , 1996 .

[23]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[24]  Amik St-Cyr,et al.  Optimal limiters for the spectral element method. , 2013 .

[25]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[26]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[27]  R. Nair,et al.  A Nonoscillatory Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2012 .

[28]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[29]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[30]  Francis X. Giraldo,et al.  Lagrange—Galerkin methods on spherical geodesic grids: the shallow water equations , 2000 .

[31]  Paul A. Ullrich,et al.  A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..

[32]  H. Tufo,et al.  A spectral finite volume transport scheme on the cubed-sphere , 2007 .

[33]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.