False Positive Removal for 3D Vehicle Detection With Penetrated Point Classifier

Recently, researchers have been leveraging LiDAR point cloud for higher accuracy in 3D vehicle detection. Most state-of-the-art methods are deep learning based, but are easily affected by the number of points generated on the object. This vulnerability leads to numerous false positive boxes at high recall positions, where objects are occasionally predicted with few points. To address the issue, we introduce Penetrated Point Classifier (PPC) based on the underlying property of LiDAR that points cannot be generated behind vehicles. It determines whether a point exists behind the vehicle of the predicted box, and if does, the box is distinguished as false positive. Our straightforward yet unprecedented approach is evaluated on KITTI dataset and achieved performance improvement of PointRCNN, one of the state-of-the-art methods. The experiment results show that precision at the highest recall position is dramatically increased by 15.46 percentage points and 14.63 percentage points on the moderate and hard difficulty of car class, respectively.

[1]  Jianxiong Xiao,et al.  Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Forrest N. Iandola,et al.  SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[4]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Shaojie Shen,et al.  Stereo R-CNN Based 3D Object Detection for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Xiaoyong Shen,et al.  DSGN: Deep Stereo Geometry Network for 3D Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Xiaolong Hu,et al.  Autonomous Driving in the iCity—HD Maps as a Key Challenge of the Automotive Industry , 2016 .

[12]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[13]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Yan Wang,et al.  Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving , 2019, ICLR.

[15]  Marius Leordeanu,et al.  Shift R-CNN: Deep Monocular 3D Object Detection With Closed-Form Geometric Constraints , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[16]  Kailun Yang,et al.  A comparative study of high-recall real-time semantic segmentation based on swift factorized network , 2019, Security + Defence.

[17]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[19]  Jana Kosecka,et al.  3D Bounding Box Estimation Using Deep Learning and Geometry , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[21]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.