Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning
暂无分享,去创建一个
Dehui Wang | Xiaohong Wang | Kai Yang | Da Xu | Da Xu | Kai Yang | Dehui Wang | Xiaohong Wang
[1] Cathy W. S. Chen,et al. Generalized Poisson autoregressive models for time series of counts , 2016, Comput. Stat. Data Anal..
[2] Tobias A. Möller,et al. Threshold Models for Integer-Valued Time Series with Infinite or Finite Range , 2015 .
[3] Paul Waltman,et al. A Threshold Model , 1974 .
[4] Tobias A. Möller. Self-exciting threshold models for time series of counts with a finite range , 2016 .
[5] Cathy W. S. Chen,et al. Bayesian causality test for integer‐valued time series models with applications to climate and crime data , 2017 .
[6] A. Owen. Empirical likelihood ratio confidence intervals for a single functional , 1988 .
[7] H. Tong. On a threshold model , 1978 .
[8] Hassan S. Bakouch,et al. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .
[9] Dehui Wang,et al. Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure , 2020 .
[10] H. Tong,et al. Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .
[11] An Approximation Model of the Collective Risk Model with INAR(1) Claim Process , 2014 .
[12] Kai Yang,et al. An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .
[13] Mohamed Alosh,et al. First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .
[14] Alain Latour,et al. Integer‐Valued GARCH Process , 2006 .
[15] Peter Thyregod,et al. Integer Valued Autoregressive Models for Tipping Bucket Rainfall Measurements , 1999 .
[16] Han Li,et al. Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes , 2017, Comput. Stat..
[17] Fukang Zhu,et al. The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes , 2011 .
[18] Magda Monteiro,et al. Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .
[19] Rong Chen. THRESHOLD VARIABLE SELECTION IN OPEN‐LOOP THRESHOLD AUTOREGRESSIVE MODELS , 1995 .
[20] Dehui Wang,et al. Threshold autoregression analysis for finite-range time series of counts with an application on measles data , 2018 .
[21] Paul I. Nelson,et al. On Conditional Least Squares Estimation for Stochastic Processes , 1978 .
[22] R. Tweedie. Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] J. Lawless,et al. Empirical Likelihood and General Estimating Equations , 1994 .
[24] Xiaotong Shen,et al. Empirical Likelihood , 2002 .
[25] Maria Eduarda Silva,et al. Self-exciting threshold binomial autoregressive processes , 2015, AStA Advances in Statistical Analysis.
[26] Cathy W. S. Chen,et al. Hysteretic Poisson INGARCH model for integer-valued time series , 2017 .
[27] D. Mondal,et al. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation , 2017 .
[28] Fukang Zhu. A negative binomial integer‐valued GARCH model , 2010 .
[29] Hassan S. Bakouch,et al. Estimation in an Integer-Valued Autoregressive Process with Negative Binomial Marginals (NBINAR(1)) , 2012 .
[30] Min Tsao,et al. Extended empirical likelihood for estimating equations , 2014 .
[31] Patrick Billingsley,et al. Statistical inference for Markov processes , 1961 .
[32] N. Chan,et al. EMPIRICAL LIKELIHOOD FOR AUTOREGRESSIVE MODELS, WITH APPLICATIONS TO UNSTABLE TIME SERIES , 2002 .
[33] R. Tweedie. Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .
[34] Alain Latour,et al. Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process , 1998 .
[35] Alain Latour,et al. A simple integer-valued bilinear time series model , 2006, Advances in Applied Probability.
[36] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[37] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[38] Dehui Wang,et al. Empirical Likelihood for an Autoregressive Model with Explanatory Variables , 2011 .
[39] William Kengne,et al. Testing Parameter Change in General Integer‐Valued Time Series , 2016, 1602.08654.
[40] Wai Keung Li,et al. Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.
[41] Cathy W. S. Chen,et al. On a threshold heteroscedastic model , 2006 .
[42] Kai Yang,et al. First-order random coefficients integer-valued threshold autoregressive processes , 2018 .
[43] Soumendra N. Lahiri,et al. A review of empirical likelihood methods for time series , 2014 .
[44] Howell Tong,et al. Nested sub-sample search algorithm for estimation of threshold models , 2016 .
[45] Christian H. Weiß,et al. Thinning-based models in the analysis of integer-valued time series: a review , 2015 .