Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning

Abstract To better describe the characteristics of time series of counts such as overdispersion or structural change, in this paper, we redefines the integer-valued threshold autoregressive models based on negative binomial thinning (NBTINAR(1)) under a weaker condition that the expectation of the innovations is finite. Parameters’ point estimation and interval estimation problems are considered. A method to test the nonlinearity of the data is provided. As an illustration, we conduct a simulation study and empirical analysis of Pittsburgh crime data sets.

[1]  Cathy W. S. Chen,et al.  Generalized Poisson autoregressive models for time series of counts , 2016, Comput. Stat. Data Anal..

[2]  Tobias A. Möller,et al.  Threshold Models for Integer-Valued Time Series with Infinite or Finite Range , 2015 .

[3]  Paul Waltman,et al.  A Threshold Model , 1974 .

[4]  Tobias A. Möller Self-exciting threshold models for time series of counts with a finite range , 2016 .

[5]  Cathy W. S. Chen,et al.  Bayesian causality test for integer‐valued time series models with applications to climate and crime data , 2017 .

[6]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[7]  H. Tong On a threshold model , 1978 .

[8]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[9]  Dehui Wang,et al.  Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure , 2020 .

[10]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[11]  An Approximation Model of the Collective Risk Model with INAR(1) Claim Process , 2014 .

[12]  Kai Yang,et al.  An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .

[13]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[14]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[15]  Peter Thyregod,et al.  Integer Valued Autoregressive Models for Tipping Bucket Rainfall Measurements , 1999 .

[16]  Han Li,et al.  Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes , 2017, Comput. Stat..

[17]  Fukang Zhu,et al.  The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes , 2011 .

[18]  Magda Monteiro,et al.  Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .

[19]  Rong Chen THRESHOLD VARIABLE SELECTION IN OPEN‐LOOP THRESHOLD AUTOREGRESSIVE MODELS , 1995 .

[20]  Dehui Wang,et al.  Threshold autoregression analysis for finite-range time series of counts with an application on measles data , 2018 .

[21]  Paul I. Nelson,et al.  On Conditional Least Squares Estimation for Stochastic Processes , 1978 .

[22]  R. Tweedie Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[24]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[25]  Maria Eduarda Silva,et al.  Self-exciting threshold binomial autoregressive processes , 2015, AStA Advances in Statistical Analysis.

[26]  Cathy W. S. Chen,et al.  Hysteretic Poisson INGARCH model for integer-valued time series , 2017 .

[27]  D. Mondal,et al.  Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation , 2017 .

[28]  Fukang Zhu A negative binomial integer‐valued GARCH model , 2010 .

[29]  Hassan S. Bakouch,et al.  Estimation in an Integer-Valued Autoregressive Process with Negative Binomial Marginals (NBINAR(1)) , 2012 .

[30]  Min Tsao,et al.  Extended empirical likelihood for estimating equations , 2014 .

[31]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[32]  N. Chan,et al.  EMPIRICAL LIKELIHOOD FOR AUTOREGRESSIVE MODELS, WITH APPLICATIONS TO UNSTABLE TIME SERIES , 2002 .

[33]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[34]  Alain Latour,et al.  Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process , 1998 .

[35]  Alain Latour,et al.  A simple integer-valued bilinear time series model , 2006, Advances in Applied Probability.

[36]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[37]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[38]  Dehui Wang,et al.  Empirical Likelihood for an Autoregressive Model with Explanatory Variables , 2011 .

[39]  William Kengne,et al.  Testing Parameter Change in General Integer‐Valued Time Series , 2016, 1602.08654.

[40]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[41]  Cathy W. S. Chen,et al.  On a threshold heteroscedastic model , 2006 .

[42]  Kai Yang,et al.  First-order random coefficients integer-valued threshold autoregressive processes , 2018 .

[43]  Soumendra N. Lahiri,et al.  A review of empirical likelihood methods for time series , 2014 .

[44]  Howell Tong,et al.  Nested sub-sample search algorithm for estimation of threshold models , 2016 .

[45]  Christian H. Weiß,et al.  Thinning-based models in the analysis of integer-valued time series: a review , 2015 .