Trends of radionuclide sorption by estuarine sediments. Experimental studies using 133Ba as a tracer.

[1]  R. Mrabet,et al.  Experimental and modelling study of plutonium uptake by suspended matter in aquatic environments from southern Spain. , 2001, Water research.

[2]  P Ciffroy,et al.  Kinetics of the adsorption and desorption of radionuclides of Co, Mn, Cs, Fe, Ag and Cd in freshwater systems: experimental and modelling approaches. , 2001, Journal of environmental radioactivity.

[3]  B Salbu,et al.  Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya. , 2000, The Science of the total environment.

[4]  R. Comans,et al.  Experimental and in situ study of radiocaesium transfer across the sediment-water interface and mobility in lake sediments , 2000 .

[5]  M. M. Abdel-Aal,et al.  A modelling study on hydrodynamics and pollutant dispersion in the Suez Canal , 2000 .

[6]  R. Periáñez,et al.  Three-dimensional modelling of the tidal dispersion of non-conservative radionuclides in the marine environment. Application to 239,240Pu dispersion in the eastern Irish Sea , 1999 .

[7]  A. Laissaoui,et al.  A theoretical technique to predict the distribution of radionuclides bound to particles in surface sediments , 1999 .

[8]  José-María Abril,et al.  Basic microscopic theory of the distribution, transfer and uptake kinetics of dissolved radionuclides by suspended particulate matter — Part I: Theory development , 1998 .

[9]  Raúl Periáñez,et al.  Kinetic transfer coefficients for radionuclides in estuarine waters: Reference values from133Ba and effects of salinity and suspended load concentration , 1998 .

[10]  E. Galán,et al.  Clay mineral and heavy metal distributions in the lower estuary of Huelva and adjacent Atlantic shelf, SW Spain , 1997 .

[11]  D. Walling,et al.  Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments , 1996 .

[12]  Raúl Periáñez,et al.  Modelling the dispersion of non-conservative radionuclides in tidal waters—Part 1: Conceptual and mathematical model , 1996 .

[13]  E. Fraga,et al.  Some physical and chemical features of the variability of kd distribution coefficients for radionuclides , 1996 .

[14]  Juan Pedro Bolívar,et al.  Enhancement of natural radioactivity in soils and salt-marshes surrounding a non-nuclear industrial complex , 1995 .

[15]  M. García-León,et al.  Radium isotopes in suspended matter in an estuarine system in the southwest of Spain , 1994 .

[16]  M. García-León,et al.  The distribution of U, Th and 226Ra derived from the phosphate fertilizer industries on an estuarine system in Southwest Spain , 1994 .

[17]  W. Evenden,et al.  Effect of sediment type, temperature and colloids on the transfer of radionuclides from water to sediment , 1994 .

[18]  José-María Abril,et al.  A 2D 4-phases marine dispersion model for non-conservative radionuclides. Part 1: Conceptual and computational model , 1993 .

[19]  P. Beneš,et al.  Kinetics of radionuclide interaction with suspended solids in modeling the migration of radionuclides in rivers , 1992 .

[20]  R. Comans,et al.  Kinetics of cesium sorption on illite , 1992 .

[21]  R. Comans,et al.  Sorption of cesium on illite: Non-equilibrium behaviour and reversibility , 1991 .

[22]  P. Beneš,et al.  Factors affecting interaction of radiostrontium with river sediments , 1990 .

[23]  E. R. Christensen,et al.  Modeling radiotracers in sediments: Comparison with observations in Lakes Huron and Michigan , 1986 .

[24]  J. Robbins A model for particle‐selective transport of tracers in sediments with conveyor belt deposit feeders , 1986 .

[25]  D. White,et al.  Dual radiotracer measurement of zoobenthos‐mediated solute and particle transport in freshwater sediments , 1984 .

[26]  F. W. Whicker,et al.  Radioecology: nuclear energy and the environment , 1984 .