WEB SEARCH RESULT CLUSTERING - A REVIEW

The ever-increasing information on the web with its heterogeneity and dynamism needs an information retrieval system which serves searcher’s ambiguous, ill-formed, short queries with relevant result in a precise way. Web search result clustering has been emerged as a method which overcomes these drawbacks of conventional information retrieval (IR) systems. It is the clustering of results returned by the search engines into meaningful, thematic groups. This paper gives a succinct overview and categorizes various techniques that have been used in clustering of web search results.

[1]  Neelam Duhan,et al.  A Novel Approach for Organizing Web Search Results using Ranking and Clustering , 2010 .

[2]  Aleksandar Bradic Search Result Clustering via Randomized Partitioning of Query-Induced Subgraphs , 2008, ArXiv.

[3]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[4]  Dawid Weiss,et al.  A concept-driven algorithm for clustering search results , 2005, IEEE Intelligent Systems.

[5]  James Allan,et al.  Improving Interactive Retrieval by Combining Ranked List and Clustering , 2000, RIAO.

[6]  Mansaf Alam,et al.  Web Search Result Clustering using Heuristic Search and Latent Semantic Indexing , 2012 .

[7]  Masaru Kitsuregawa,et al.  Link Based Clustering of Web Search Results , 2001, WAIM.

[8]  Dawid Weiss,et al.  A survey of Web clustering engines , 2009, CSUR.

[9]  James Allan,et al.  Web Page Clustering Using Heuristic Search in the Web Graph , 2007, IJCAI.

[10]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[11]  Dell Zhang,et al.  Semantic, Hierarchical, Online Clustering of Web Search Results , 2004, APWeb.

[12]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[13]  Roberto Navigli,et al.  Inducing Word Senses to Improve Web Search Result Clustering , 2010, EMNLP.

[14]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[15]  Giansalvatore Mecca,et al.  A new algorithm for clustering search results , 2007, Data Knowl. Eng..

[16]  Ke Wang,et al.  Hierarchical Document Clustering , 2009, Encyclopedia of Data Warehousing and Mining.

[17]  Sumanta Guha,et al.  Semantic Suffix Tree Clustering , 2010 .