Peak Efficiency Aware Scheduling for Highly Energy Proportional Servers

Energy proportionality of data center severs have improved drastically over the past decade to the point where near ideal energy proportional servers are now common. These highly energy proportional servers exhibit the unique property where peak efficiency no longer coincides with peak utilization. In this paper, we explore the implications of this property on data center scheduling. We identified that current state of the art data center schedulers does not efficiently leverage these properties, leading to inefficient scheduling decisions. We propose Peak Efficiency Aware Scheduling (PEAS) which can achieve better-than-ideal energy proportionality at the data center level. We demonstrate that PEAS can reduce average power by 25.5% with 3.0% improvement to TCO compared to state-of-the-art scheduling policies.

[1]  John D. Davis,et al.  Star-Cap: Cluster Power Management Using Software-Only Models , 2014, 2014 43rd International Conference on Parallel Processing Workshops.

[2]  David Meisner,et al.  Stochastic Queuing Simulation for Data Center Workloads , 2010 .

[3]  Gu-Yeon Wei,et al.  Tradeoffs between power management and tail latency in warehouse-scale applications , 2014, 2014 IEEE International Symposium on Workload Characterization (IISWC).

[4]  Yiannakis Sazeides,et al.  The Implications of Different DRAM Protection Techniques on Datacenter TCO , 2015 .

[5]  Anand Sivasubramaniam,et al.  Reducing data center power with server consolidation: Approximation and evaluation , 2010, 2010 International Conference on High Performance Computing.

[6]  Jordi Torres,et al.  GreenSlot: Scheduling energy consumption in green datacenters , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[7]  Thomas F. Wenisch,et al.  Power management of online data-intensive services , 2011, 2011 38th Annual International Symposium on Computer Architecture (ISCA).

[8]  Prashant J. Shenoy,et al.  Dynamic Provisioning of Multi-tier Internet Applications , 2005, Second International Conference on Autonomic Computing (ICAC'05).

[9]  Mor Harchol-Balter,et al.  AutoScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers , 2012, TOCS.

[10]  Diana Marculescu,et al.  Analysis of dynamic voltage/frequency scaling in chip-multiprocessors , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[11]  David E. Irwin,et al.  Ensemble-level Power Management for Dense Blade Servers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[12]  Kai Ma,et al.  PGCapping: Exploiting power gating for power capping and core lifetime balancing in CMPs , 2012, 2012 21st International Conference on Parallel Architectures and Compilation Techniques (PACT).

[13]  Sherief Reda,et al.  Pack & Cap: Adaptive DVFS and thread packing under power caps , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[14]  Julia Chen,et al.  A Retrospective Look Back on the Road Towards Energy Proportionality , 2015, 2015 IEEE International Symposium on Workload Characterization.

[15]  Daniel Wong,et al.  KnightShift: Scaling the Energy Proportionality Wall through Server-Level Heterogeneity , 2012, 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture.

[16]  Mor Harchol-Balter,et al.  Power Capping Via Forced Idleness , 2009 .

[17]  Stephen W. Poole,et al.  Measuring Server Energy Proportionality , 2015, ICPE.

[18]  Stephen W. Poole,et al.  Revisiting Server Energy Proportionality , 2013, 2013 42nd International Conference on Parallel Processing.

[19]  Sandeep K. S. Gupta,et al.  Energy Proportionality and the Future: Metrics and Directions , 2010, 2010 39th International Conference on Parallel Processing Workshops.

[20]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[21]  Andrew Warfield,et al.  Live migration of virtual machines , 2005, NSDI.

[22]  Christoforos E. Kozyrakis,et al.  Towards energy proportionality for large-scale latency-critical workloads , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

[23]  Babak Falsafi,et al.  Scale-out processors , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).

[24]  Christoforos E. Kozyrakis,et al.  Energy proportionality and workload consolidation for latency-critical applications , 2015, SoCC.

[25]  Daniel Wong,et al.  Implications of high energy proportional servers on cluster-wide energy proportionality , 2014, 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA).

[26]  Qingyuan Deng,et al.  MemScale: active low-power modes for main memory , 2011, ASPLOS XVI.

[27]  Karsten Schwan,et al.  VirtualPower: coordinated power management in virtualized enterprise systems , 2007, SOSP.

[28]  Wolf-Dietrich Weber,et al.  Power provisioning for a warehouse-sized computer , 2007, ISCA '07.

[29]  Jeffrey S. Chase,et al.  Making Scheduling "Cool": Temperature-Aware Workload Placement in Data Centers , 2005, USENIX Annual Technical Conference, General Track.

[30]  Luiz André Barroso,et al.  The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines , 2009, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines.

[31]  Junjie Wu,et al.  BigHouse: A simulation infrastructure for data center systems , 2012, 2012 IEEE International Symposium on Performance Analysis of Systems & Software.

[32]  Thomas F. Wenisch,et al.  PowerNap: eliminating server idle power , 2009, ASPLOS.

[33]  Pradip Bose,et al.  Microarchitectural techniques for power gating of execution units , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[34]  Xiaorui Wang,et al.  Power capping: a prelude to power shifting , 2008, Cluster Computing.

[35]  Luiz André Barroso,et al.  The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition , 2013, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition.

[36]  Lachlan L. H. Andrew,et al.  Dynamic Right-Sizing for Power-Proportional Data Centers , 2011, IEEE/ACM Transactions on Networking.

[37]  Lieven Eeckhout,et al.  Trends in Server Energy Proportionality , 2011, Computer.

[38]  Yiannakis Sazeides,et al.  Modeling the implications of DRAM failures and protection techniques on datacenter TCO , 2015, 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[39]  Thomas F. Wenisch,et al.  DreamWeaver: architectural support for deep sleep , 2012, ASPLOS XVII.

[40]  Ricardo Bianchini,et al.  Barely alive memory servers: Keeping data active in a low-power state , 2012, JETC.

[41]  Lingjia Tang,et al.  Whare-map: heterogeneity in "homogeneous" warehouse-scale computers , 2013, ISCA.

[42]  Christina Delimitrou,et al.  Paragon: QoS-aware scheduling for heterogeneous datacenters , 2013, ASPLOS '13.

[43]  Manish Marwah,et al.  Delivering Energy Proportionality with Non Energy-Proportional Systems - Optimizing the Ensemble , 2008, HotPower.

[44]  Christoforos E. Kozyrakis,et al.  Dynamic management of TurboMode in modern multi-core chips , 2014, 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA).