Domain-Invariant Region Proposal Network For Cross-Domain Detection

The performances of object detectors are highly impacted by the discrepancy between existing data sets and application scenarios, leading to the so-called domain shift problem. Previous works, based on Faster R-CNN, focus on aligning the image-level features and the region-level features. However, the Region Proposal Network (RPN), as a key module between the image-level and the region-level modules, still has the problem of domain shift that leads to inaccurate or even false detected results. To tackle this issue, we propose a new design, Domain-Invariant RPN (DIR), which adopts adversarial learning to eliminate the domain shift in RPN, and thereby, significantly improving the accuracy and robustness of bounding box proposals. Furthermore, we propose a Double-Consistency Regularization (DCR) to improve the overall feature alignment. Extensive experiments show that our approach outperforms state-of-the-art methods.

[1]  Ming-Hsuan Yang,et al.  Learning to Adapt Structured Output Space for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[2]  Chong-Wah Ngo,et al.  Exploring Object Relation in Mean Teacher for Cross-Domain Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Luc Van Gool,et al.  Domain Adaptive Faster R-CNN for Object Detection in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[7]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[8]  Kate Saenko,et al.  Strong-Weak Distribution Alignment for Adaptive Object Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Yizhou Wang,et al.  Multi-Level Domain Adaptive Learning for Cross-Domain Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[10]  Luc Van Gool,et al.  Semantic Foggy Scene Understanding with Synthetic Data , 2017, International Journal of Computer Vision.

[11]  Changick Kim,et al.  Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Matthew Johnson-Roberson,et al.  Driving in the Matrix: Can virtual worlds replace human-generated annotations for real world tasks? , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[14]  Xinge Zhu,et al.  Adapting Object Detectors via Selective Cross-Domain Alignment , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Kiyoharu Aizawa,et al.  Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..