Excitonic coupling in polythiophenes: comparison of different calculation methods.

In conjugated polymers the optical excitation energy transfer is usually described as Forster-type hopping between so-called spectroscopic units. In the simplest approach using the point-dipole approximation the transfer rate is calculated based on the interaction between the transition dipoles of two spectroscopic units. In the present work we compare this approach with three others: The line-dipole approximation, the Coulomb integral between the transition densities, and a quantum-chemical calculation of the interacting dimer as entity. The latter two approaches are based on the semiempirical method ZINDO. The line-dipole approximation is an attractive compromise between computational effort and precision for calculations of the excitonic coupling in extended conjugated polymers.

[1]  O. Inganäs,et al.  Structural ordering in phenyl-substituted polythiophenes , 2000 .

[2]  O. Inganäs,et al.  Photoluminescence Properties of Polythiophenes , 1999 .

[3]  David Beljonne,et al.  Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach , 2000 .

[4]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides , 1979 .

[5]  David L. Andrews,et al.  Resonance Energy Transfer , 1999 .

[6]  V. Sundström,et al.  Interchain photoluminescence in substituted polyfluorenes , 2001 .

[7]  M. Berggren,et al.  Synthesis of poly(alkylthiophenes) for light emitting diodes , 1994 .

[8]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[9]  J. Chang,et al.  Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls , 1999 .

[10]  Bradley,et al.  Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). , 1990, Physical review. B, Condensed matter.

[11]  J. Als-Nielsen,et al.  Structural aspects of oriented poly(octylphenylthiophene) studied in bulk and sub-micron layers by X-ray diffraction , 1995 .

[12]  C. Kuper Polarons and Excitons , 1963 .

[13]  V. Sundström,et al.  Intra- and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene , 2001 .

[14]  V. Sundström,et al.  High luminescence from a substituted polythiophene in a solvent with low solubility , 2001 .

[15]  R. Friend,et al.  Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[17]  N. S. Sariciftci,et al.  TRIPLET-STATE PHOTOEXCITATIONS OF OLIGOTHIOPHENE FILMS AND SOLUTIONS , 1994 .

[18]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .

[19]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[20]  V. Sundström,et al.  Conformational disorder and energy migration in MEH-PPV with partially broken conjugation , 2003 .

[21]  V. Sundström,et al.  Conformational disorder of a substituted polythiophene in solution revealed by excitation transfer , 2001 .

[22]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[23]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[24]  K. Sanui,et al.  Estimate of the effective conjugation length of polythiophene from its|χ(3)(ω;ω,ω,−ω)|spectrum at excitonic resonance , 1998 .

[25]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[26]  C. Ambrosch-Draxl,et al.  Ab-initio study on the inter-molecular interactions in polythiophene , 2001 .

[27]  Niyasi Serdar Sariciftci,et al.  Primary Photoexcitations In Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model , 1997 .

[28]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[29]  Göran Gustafsson,et al.  Controlling colour by voltage in polymer light emitting diodes , 1995 .

[30]  M. Berggren,et al.  Polythiophene polymers in light emitting diodes: making multicolour devices , 1994 .

[31]  V. Sundström,et al.  Ultrafast Excitation Transfer and Trapping in a Thin Polymer Film. , 2003 .

[32]  B. Roos,et al.  A theoretical study of the electronic spectrum of terthiophene , 1996 .

[33]  Luis G. Arnaut,et al.  Singlet and triplet energies of α-oligothiophenes: A spectroscopic, theoretical, and photoacoustic study: Extrapolation to polythiophene , 1999 .

[34]  M. Thompson,et al.  A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis , 1991 .

[35]  R. Silbey,et al.  Conformational disorder of conjugated polymers: Implications for optical properties , 1996 .

[36]  G. Brocks,et al.  Ab initio prediction of the electronic and optical excitations in polythiophene: Isolated chains versus bulk polymer , 2000, cond-mat/0004032.

[37]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[38]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[39]  B. Roos,et al.  A theoretical study of the electronic spectrum of bithiophene , 1995 .