Algebraic stability conditions and contractible stability spaces

Suppose that C is either a locally-finite triangulated category with finite rank Grothendieck group, or a discrete derived category of finite global dimension. We prove that any component of the space of stability conditions on C is contractible (and that there is only one component in the discrete case). More generally, we prove that any ‘finite-type’ component of a stability space is contractible. In particular, the principal component of the stability space associated to the Calabi–Yau-N Ginzburg algebra of an ADE Dynkin quiver is contractible. These results generalise and unify various known ones for stability spaces of specific categories, and settle some conjectures about the stability spaces associated to Dynkin quivers, and to their Calabi–Yau-N Ginzburg algebras.

[1]  Nathan Broomhead,et al.  Discrete derived categories II: the silting pairs CW complex and the stability manifold , 2014, J. Lond. Math. Soc..

[2]  H. Krause COHOMOLOGICAL LENGTH FUNCTIONS , 2012, Nagoya Mathematical Journal.

[3]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[4]  D. Tamaki,et al.  Totally normal cellular stratified spaces and applications to the configuration space of graphs , 2013, 1312.7368.

[5]  D. Ploog,et al.  Discrete derived categories I: homomorphisms, autoequivalences and t-structures , 2013, 1312.5203.

[6]  A. Bondal Operations on -structures and perverse coherent sheaves , 2013, 1308.2549.

[7]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[8]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[9]  Y. Kawamata Derived Categories in Algebraic Geometry , 2013 .

[10]  D. Ploog,et al.  Averaging t-structures and extension closure of aisles , 2012, 1208.5691.

[11]  B. Keller Cluster algebras and derived categories , 2012, 1202.4161.

[12]  J. Woolf Some metric properties of spaces of stability conditions , 2011, 1108.2668.

[13]  Osamu Iyama,et al.  Silting mutation in triangulated categories , 2010, J. Lond. Math. Soc..

[14]  A. King,et al.  EXCHANGE GRAPHS OF ACYCLIC CALABI-YAU CATEGORIES , 2012 .

[15]  T. Sutherland The modular curve as the space of stability conditions of a CY3 algebra , 2011, 1111.4184.

[16]  H. Krause Report on locally finite triangulated categories , 2011, 1101.3233.

[17]  J. Woolf Stability conditions, torsion theories and tilting , 2009, 0909.0552.

[18]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[19]  Idun Reiten,et al.  Homological and Homotopical Aspects of Torsion Theories , 2007 .

[20]  Emanuele Macrì Stability conditions on curves , 2007, Mathematical Research Letters.

[21]  Claire Amiot ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES , 2006, math/0612141.

[22]  Donald Stanley Invariants of "t"-structures and classification of nullity classes , 2006, math/0602252.

[23]  T. Bridgeland Stability Conditions on a Non-Compact Calabi-Yau Threefold , 2005, math/0509048.

[24]  J. Xiao,et al.  Locally finite triangulated categories , 2005 .

[25]  T. Bridgeland T-structures on some local Calabi–Yau varieties , 2005, math/0502050.

[26]  C. Geiss,et al.  Classification of discrete derived categories , 2004 .

[27]  T. Bridgeland Stability conditions on $K3$ surfaces , 2003, math/0307164.

[28]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[29]  Richard P. Thomas Stability conditions and the braid group , 2002, math/0212214.

[30]  D. Vossieck The Algebras with Discrete Derived Category , 2001 .

[31]  I. Reiten,et al.  Tilting in Abelian Categories and Quasitilted Algebras , 1996 .

[32]  W. Geigle The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences , 1985 .

[33]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[34]  Maurice Auslander,et al.  Representation Theory of Artin Algebras II , 1974 .