Fast and simple qubit-based synchronization for quantum key distribution

We propose Qubit4Sync, a synchronization method for Quantum Key Distribution (QKD) setups, based on the same qubits exchanged during the protocol and without requiring additional hardware other than the one necessary to prepare and measure the quantum states. Our approach introduces a new cross-correlation algorithm achieving the lowest computational complexity, to our knowledge, for high channel losses. We tested the robustness of our scheme in a real QKD implementation.

[1]  Chang Liu,et al.  Free-space quantum key distribution in urban daylight with the SPGD algorithm control of a deformable mirror. , 2018, Optics express.

[2]  J. C. Bellamy,et al.  Digital network synchronization , 1995, IEEE Commun. Mag..

[3]  C. A. Eldering,et al.  Digital burst mode clock recovery technique for fiber-optic systems , 1994 .

[4]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[5]  Giuseppe Vallone,et al.  Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder , 2019, Optica.

[6]  Eylem Ekici,et al.  Proceedings of the 18th annual international conference on Mobile computing and networking , 2012, MobiCom 2012.

[7]  Hugo Zbinden,et al.  Simple and high-speed polarization-based QKD , 2018, 1801.10067.

[8]  Masahide Sasaki,et al.  Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. , 2013, Optics express.

[9]  Feng Yu,et al.  Time Delay Estimation via Co-Prime Aliased Sparse FFT , 2016, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Laurent Labonté,et al.  A universal, plug-and-play synchronisation scheme for practical quantum networks , 2020, 2007.02256.

[12]  Stefano Bregni,et al.  Clock stability characterization and measurement in telecommunications , 1997 .

[13]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[14]  Liuguo Yin,et al.  Implementation and security analysis of practical quantum secure direct communication , 2018, Light: Science & Applications.

[15]  S. Wehner,et al.  Experimental bit commitment based on quantum communication and special relativity. , 2013, Physical review letters.

[16]  Jian Wang,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2009, Optics express.

[17]  Hyuek Jae Lee,et al.  A new burst-mode clock recovery technique for optical passive networks , 2010 .

[18]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[19]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[20]  Zach DeVito,et al.  Opt , 2017 .

[21]  Peng Liu,et al.  Secure and efficient synchronization scheme for quantum key distribution , 2019, OSA Continuum.

[22]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[23]  Amir K. Khandani,et al.  Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations , 2015, 1512.05789.

[24]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[25]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[26]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[27]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2010, Optics express.

[28]  Pascal Junod,et al.  A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing , 2013, 1309.2583.

[29]  Sanaz Salem,et al.  All-digital clock and data recovery circuit for USB applications in 65 nm CMOS technology , 2019 .

[30]  G. Vallone,et al.  Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels , 2014, 1404.1272.

[31]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[32]  Lei M. Li,et al.  An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints , 2004, Comput. Stat. Data Anal..

[33]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[34]  Todd E. Humphreys,et al.  Requirements for Secure Clock Synchronization , 2017, IEEE Journal of Selected Topics in Signal Processing.

[35]  Paolo Villoresi,et al.  All-fiber self-compensating polarization encoder for quantum key distribution. , 2019, Optics letters.

[36]  Paolo Villoresi,et al.  Source-device-independent heterodyne-based quantum random number generator at 17 Gbps , 2018, Nature Communications.

[37]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[38]  James F. Dynes,et al.  Ultra-high bandwidth quantum secured data transmission , 2016, Scientific Reports.

[39]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.