Quadratic Form Expansions for Unitaries

We introduce techniques to analyze unitary operations in terms of quadratic form expansions , a form similar to a sum over paths in the computational basis where the phase contributed by each path is described by a quadratic form over ***. We show how to relate such a form to an entangled resource akin to that of the one-way measurement model of quantum computing. Using this, we describe various conditions under which it is possible to efficiently implement a unitary operation U , either when provided a quadratic form expansion for U as input, or by finding a quadratic form expansion for U from other input data.

[1]  Elham Kashefi,et al.  Phase map decompositions for unitaries , 2006 .

[2]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[3]  K. N. Patel,et al.  Efficient Synthesis of Linear Reversible Circuits , 2003 .

[4]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[5]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  John P. Hayes,et al.  Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..

[9]  H. Briegel,et al.  One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.

[10]  October I Physical Review Letters , 2022 .

[11]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[12]  Dirk Schlingemann Cluster states, algorithms and graphs , 2004, Quantum Inf. Comput..

[13]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[14]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[15]  Michael A. Nielsen,et al.  Quantum computing and polynomial equations over the finite field Z 2 , 2004 .

[16]  J. Niel de Beaudrap,et al.  An extremal result for geometries in the one-way measurement model , 2008, Quantum Inf. Comput..

[17]  Mehdi Mhalla,et al.  Finding Optimal Flows Efficiently , 2007, ICALP.

[18]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[19]  Physical Review , 1965, Nature.

[20]  E. Kashefi,et al.  Determinism in the one-way model , 2005, quant-ph/0506062.

[21]  P. Panangaden,et al.  Parsimonious and robust realizations of unitary maps in the one-way model , 2005 .

[22]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[23]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[24]  Niel de Beaudrap Finding flows in the one-way measurement model , 2008 .

[25]  S. Aaronson,et al.  Improved simulation of stabilizer circuits (14 pages) , 2004 .

[26]  B. Moor,et al.  Clifford group, stabilizer states, and linear and quadratic operations over GF(2) , 2003, quant-ph/0304125.

[27]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[28]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[29]  Elham Kashefi,et al.  Parallelizing quantum circuits , 2007, Theor. Comput. Sci..