Curves, Hypersurfaces, and Good Pairs of Adjacency Relations

In this paper we propose several equivalent definitions of digital curves and hypersurfaces in arbitrary dimension. The definitions involve properties such as one-dimensionality of curves and (n – 1)-dimensionality of hypersurfaces that make them discrete analogs of corresponding notions in topology. Thus this work appears to be the first one on digital manifolds where the definitions involve the notion of dimension. In particular, a digital hypersurface in nD is an (n – 1)-dimensional object, as it is in the case of continuous hypersurfaces. Relying on the obtained properties of digital hypersurfaces, we propose a uniform approach for studying good pairs defined by separations and obtain a clssification of good pairs in arbitrary dimension.

[1]  James G. Oxley,et al.  Matroid theory , 1992 .

[2]  Peter E. Hart,et al.  GRAPHICAL-DATA-PROCESSING RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION , 1964 .

[3]  Azriel Rosenfeld,et al.  Adjacency in Digital Pictures , 1974, Inf. Control..

[4]  Donald H. Cooley,et al.  The Equivalence between two Definitions of Digital Surfaces , 1999, Inf. Sci..

[5]  T. Y. Kong,et al.  On the soundness of surface voxelizations , 1996 .

[6]  Ralph Kopperman,et al.  A Jordan surface theorem for three-dimensional digital spaces , 1991, Discret. Comput. Geom..

[7]  Eric Andres,et al.  Object discretizations in higher dimensions , 2002, Pattern Recognit. Lett..

[8]  Jacques-Olivier Lachaud,et al.  Continuous Analogs of Digital Boundaries: A Topological Approach to Iso-Surfaces , 2000, Graph. Model..

[9]  James C. Alexander,et al.  The Boundary Count of Digital Pictures , 1971, JACM.

[10]  Ulrich Eckhardt,et al.  Topologies for the digital spaces Z2 and Z3 , 2003, Comput. Vis. Image Underst..

[11]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[12]  Larry S. Davis,et al.  Foundations of Image Understanding , 2001 .

[13]  Gilles Bertrand,et al.  Some Topological Properties of Surfaces in Z3 , 2004, Journal of Mathematical Imaging and Vision.

[14]  Jayaram K. Udupa,et al.  Connected, oriented, closed boundaries in digital spaces: Theory and algorithms , 1996 .

[15]  T. Y. Kong,et al.  Topological Algorithms for Digital Image Processing , 1996 .

[16]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[17]  Atsushi Imiya,et al.  Discrete combinatorial geometry , 1997, Pattern Recognit..

[18]  Gilles Bertrand,et al.  Tessellations by connection , 2002, Pattern Recognit. Lett..

[19]  Vladimir Kovalevsky,et al.  Multidimensional cell lists for investigating 3-manifolds , 2003, Discret. Appl. Math..

[20]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, II. Connectivity and Order of Connectivity , 1971, JACM.

[21]  Chul E. Kim,et al.  Three-Dimensional Digital Line Segments , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  John Mylopoulos,et al.  Some Results in Computational Topology , 1973, JACM.

[23]  Eric Andres,et al.  Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..

[24]  Azriel Rosenfeld,et al.  Digital surfaces , 1991, CVGIP Graph. Model. Image Process..

[25]  Gabor T. Herman,et al.  Boundaries in digital spaces: Basic theory , 1996 .

[26]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[27]  Rémy Malgouyres A Definition of Surfaces of Z: A new 3D Discrete Jordan Theorem , 1997, Theor. Comput. Sci..

[28]  Jean Françon Discrete Combinatorial Surfaces , 1995, CVGIP Graph. Model. Image Process..

[29]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, I. The Notion of Dimension , 1971, JACM.

[30]  Azriel Rosenfeld Compact Figures in Digital Pictures , 1974, IEEE Trans. Syst. Man Cybern..

[31]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[32]  T. Yung Kong Topological adjacency relations on Zn , 2002, Theor. Comput. Sci..

[33]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[34]  George Tourlakis,et al.  Homological Methods for the Classification of Discrete Euclidean Structures , 1977 .

[35]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .