Open Sets Avoiding Integral Distances
暂无分享,去创建一个
[1] Anthony Quas,et al. Distances in positive density sets in Rd , 2009, J. Comb. Theory, Ser. A.
[2] Michael Frazier,et al. Studies in Advanced Mathematics , 2004 .
[3] Heinrich W. E. Jung. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .
[4] Elias M. Stein,et al. Fourier Analysis: An Introduction , 2003 .
[5] Two Optimization Problems for Convex Bodies in the n-dimensional Space Dedicated to the memory of Bernulf Weißbach , 2004 .
[6] Paul Erdös. Ulam, the man and the mathematician , 1985, J. Graph Theory.
[7] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[9] Thomas Wolff,et al. Recent work connected with the Kakeya problem , 2007 .
[10] Sascha Kurz,et al. There Are Integral Heptagons, no Three Points on a Line, no Four on a Circle , 2008, Discret. Comput. Geom..
[11] R. D. Carmichael,et al. Mathematical tables and formulae , 1958 .
[12] Panos M. Pardalos,et al. Lectures on Global Optimization , 2009 .
[13] B. Bukh. Measurable Sets With Excluded Distances , 2008 .
[14] P. R. Scott,et al. INEQUALITIES FOR CONVEX SETS , 2000 .
[15] Kenneth Falconer,et al. Unsolved Problems In Geometry , 1991 .
[16] Ryan Schwartz,et al. Rational Distances with Rational Angles , 2010 .
[17] Murray S. Klamkin. Unsolved Problems in Intuitive Mathematics, Vol. II, Unsolved Problems in Geometry (H. T. Croft, K. J. Falconer, and R. K Guy) , 1992, SIAM Rev..
[18] József Solymosi,et al. On a Question of Erdős and Ulam , 2008, Discret. Comput. Geom..
[19] R. Gardner. Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .
[20] Eric Schmutz,et al. Rational points on the unit sphere , 2008 .
[21] Frank de Zeeuw. An Algebraic View of Discrete Geometry , 2011 .
[22] B. V. Dekster. The Jung Theorem in metric spaces of curvature bounded above , 1997 .
[23] Péter Komjáth,et al. Problems And Theorems In Classical Set Theory , 2006 .
[24] P. McMullen. GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .
[25] J. M. H. Olmsted. Rational Values of Trigonometric Functions , 1945 .
[26] F. M. D. O. Filho,et al. Fourier analysis, linear programming, and densities of distance avoiding sets in R^n , 2008, 0808.1822.
[27] Henry B. Mann,et al. On linear relations between roots of unity , 1965 .
[28] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[29] János Pach,et al. Research problems in discrete geometry , 2005 .
[30] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[31] Larry Guth,et al. On the Erdos distinct distance problem in the plane , 2010, 1011.4105.
[32] Fernando Mário Oliveira Filho,et al. Lower Bounds for Measurable Chromatic Numbers , 2008, 0801.1059.
[33] Y. Bugeaud. Distribution Modulo One and Diophantine Approximation: References , 2012 .
[34] S. Ulam. A collection of mathematical problems , 1960 .
[35] L. Evans. Measure theory and fine properties of functions , 1992 .
[36] R. Graham,et al. Are There n + 2 Points in E n With Odd Integral Distances? , 1974 .
[37] PETER BRASS,et al. A Lower Bound for Lebesgue's Universal Cover Problem , 2005, Int. J. Comput. Geom. Appl..
[38] B. Weiss,et al. Ergodic Theory and Configurations in Sets of Positive Density , 1990 .
[39] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[40] L. Piepmeyer,et al. The maximum number of odd integral distances between points in the plane , 1996, Discret. Comput. Geom..
[41] Pierre Hansen,et al. Extremal Problems for Convex Polygons - An Update , 2007 .
[42] Vojtěch Rödl,et al. Mathematics of Ramsey Theory , 1991 .
[43] H. T. Croft. Unsolved Problems in Geometry Unsolved Problems in Intuitive Mathematics , 1991 .