Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPoly™ solar cells

[1]  A. Aberle,et al.  Development of thin polysilicon layers for application in monoPoly™ cells with screen-printed and fired metallization , 2020 .

[2]  F. Feldmann,et al.  Efficiency Roadmap for Evolutionary Upgrades of PERC Solar Cells by TOPCon: Impact of Parasitic Absorption , 2020, IEEE Journal of Photovoltaics.

[3]  M. Zeman,et al.  Screen printed Ag contacts for n-type polysilicon passivated contacts , 2019, 15th International Conference on Concentrator Photovoltaic Systems (CPV-15).

[4]  Vinodh Shanmugam,et al.  Metal contact recombination in monoPoly™ solar cells with screen-printed & fire-through contacts , 2019, Solar Energy Materials and Solar Cells.

[5]  T. Kluge,et al.  Approaching 23% with large‐area monoPoly cells using screen‐printed and fired rear passivating contacts fabricated by inline PECVD , 2018, Progress in Photovoltaics: Research and Applications.

[6]  A. Aberle,et al.  monoPoly™ cells: Large-area crystalline silicon solar cells with fire-through screen printed contact to doped polysilicon surfaces , 2018, Solar Energy Materials and Solar Cells.

[7]  R. Brendel,et al.  Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells , 2018, Solar Energy Materials and Solar Cells.

[8]  N. Balaji,et al.  High-Quality Doped Polycrystalline Silicon Using Low-Pressure Chemical Vapor Deposition (LPCVD) , 2018, Energy Procedia.

[9]  J. Luchies,et al.  Metallisation of Boron‐Doped Polysilicon Layers by Screen Printed Silver Pastes , 2017 .

[10]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[11]  Yuehua Wu,et al.  Study of screen printed metallization for polysilicon based passivating contacts , 2017 .

[12]  J. Luchies,et al.  Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells , 2017 .

[13]  Ingrid G. Romijn,et al.  n-Type polysilicon passivating contact for industrial bifacial n-type solar cells , 2016 .

[14]  E. Bugiel,et al.  Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? , 2016 .

[15]  D. Inns Understanding Metal Induced Recombination Losses in Silicon Solar Cells with Screen Printed Silver Contacts , 2016 .

[16]  R. Brendel,et al.  Implementation of n+ and p+ Poly Junctions on Front and Rear Side of Double-Side Contacted Industrial Silicon Solar Cells , 2016 .

[17]  A. Cuevas,et al.  Phosphorus-diffused polysilicon contacts for solar cells , 2015 .

[18]  A. Aberle,et al.  A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells , 2015, IEEE Journal of Photovoltaics.

[19]  S. Glunz,et al.  Tunnel oxide passivated contacts as an alternative to partial rear contacts , 2014 .

[20]  B. Lim,et al.  A Simple Model Describing the Symmetric $I\hbox{--}V$ Characteristics of $\hbox{p}$ Polycrystalline Si/ $\hbox{n}$ Monocrystalline Si, and $\hbox{n}$ Polycrystalline Si/ $\hbox{p}$ Monocrystalline Si Junctions , 2014 .

[21]  S. Glunz,et al.  Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics , 2014 .

[22]  E. C. Campos Screen Printed Silver Contacting Interface in Industrial Crystalline Silicon Solar Cells , 2013 .

[23]  D. Biro,et al.  Impact of screen printing silver paste components on the space charge region recombination losses of industrial silicon solar cells , 2012 .

[24]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .

[25]  Eli Yablonovitch,et al.  Electron‐hole recombination at the Si‐SiO2 interface , 1986 .

[26]  R. M. Swanson,et al.  A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell , 1985 .

[27]  Martin A. Green,et al.  High-efficiency silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[28]  M. Green,et al.  Advantages of metal-insulator-semiconductor structures for silicon solar cells , 1983 .