MV-Algebras and Abelian l -Groups: a Fruitful Interaction
暂无分享,去创建一个
[1] D. Mundici. Farey stellar subdivisions, ultrasimplicial groups, and K0 of AF C∗-algebras , 1988 .
[2] E. Effros. Dimensions and *-Algebras , 1981 .
[3] Kirby A. Baker,et al. Free Vector Lattices , 1968, Canadian Journal of Mathematics.
[4] O. Bratteli. Inductive limits of finite dimensional C*-algebras , 1972 .
[5] Garrett Birkhoff,et al. Lattices and their applications , 1938 .
[6] Claudio Procesi,et al. Complete Symmetric Varieties II Intersection theory , 1985 .
[7] Every Abelian ℓ-Group is Ultrasimplicial , 2000 .
[8] Giovanni Panti,et al. A geometric proof of the completeness of the Łukasiewicz calculus , 1995, Journal of Symbolic Logic.
[9] D. Mundici. Classes of Ultrasimplicial Lattice-Ordered Abelian Groups , 1999 .
[10] Ken R. Goodearl,et al. Notes on real and complex C[*]-algebras , 1982 .
[11] Gérard G. Emch,et al. Mathematical and conceptual foundations of 20th-century physics , 1984 .
[12] D. Mundici,et al. Algebraic Foundations of Many-Valued Reasoning , 1999 .
[13] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[14] W. M. Beynon. Duality Theorems for Finitely Generated Vector Lattices , 1975 .
[15] Daniele Mundici,et al. A constructive proof of McNaughton's theorem in infinite-valued logic , 1994, Journal of Symbolic Logic (JSL).
[16] Richard V. Kadison,et al. Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .
[17] Tadao Oda. Convex bodies and algebraic geometry , 1987 .
[18] Daniele Mundici,et al. An Elementary Proof of Chang's Completeness Theorem for the Infinite-valued Calculus of Lukasiewicz , 1997, Stud Logica.
[19] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[20] G. Ewald. Combinatorial Convexity and Algebraic Geometry , 1996 .
[21] A. M. W. Glass,et al. Partially Ordered Groups , 1999 .
[22] K. Goodearl. Partially ordered abelian groups with interpolation , 1986 .
[23] Robert McNaughton,et al. A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..
[24] W. M. Beynon. Applications of duality in the theory of finitely generated lattice-ordered abelian groups , 1977 .
[25] Edward G. Effros,et al. Dimension Groups and Their Affine Representations , 1980 .
[26] Ryszard Wójcicki,et al. On matrix representations of consequence operations of Łlukasiewicz's sentential calculi , 1973 .
[27] A constructive proof that every 3-generated l-group is ultrasimplicial , 1999 .
[28] Daniele Mundici,et al. Decidable and undecidable prime theories in infinite-valued logic , 2001, Ann. Pure Appl. Log..
[29] Daniele Mundici. Nonboolean partitions and their logic , 1998, Soft Comput..
[30] C. Chang,et al. A new proof of the completeness of the Łukasiewicz axioms , 1959 .
[31] J. W. Alexander,et al. The Combinatorial Theory of Complexes , 1930 .
[32] George A. Elliott,et al. On totally ordered groups, and K0 , 1979 .
[33] Kôsaku Yosida,et al. 29. On Vector Lattice with a Unit , 1941 .
[34] R Cignoli. Free lattice - ordered abelian groups and varieties of mv - algebras , 1993 .
[35] J. Rosser,et al. Fragments of many-valued statement calculi , 1958 .
[36] Elliot Carl Weinberg,et al. Free lattice-ordered abelian groups. II , 1963 .
[37] George A. Elliott,et al. On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , 1976 .
[38] G. Ziegler. Lectures on Polytopes , 1994 .
[39] M. Wajsberg. Beiträge zum Metaaussagenkalkül I , 1935 .
[40] J. W. Alexander. Combinatorial analysis situs , 1926 .