In this paper, we introduce description trees, to give a general framework for the recursive decompositions of several families of planar maps studied by W.T. Tutte. These trees reeect the combinatorial structure of the decompositions and carry out various combi-natorial parameters. We also introduce left regular trees as canonical representants of some new conjugacy classes on planted plane trees. We give an enumeration formula for these trees. In several cases the combination of these two ingredients yields a purely combinatorial proof of some elegant formulae of W.T. Tutte and gives uniform random generation algorithms for the corresponding planar maps. Rsum Dans cet article, nous introduisons des arbres de description pour coder la dcomposi-tion rcursive de plusieurs familles de cartes planaires tudies par W.T. Tutte. Ces arbres reetent la structure combinatoire de la dcomposition et portent diirents paramtres com-binatoires. Nous introduisons aussi les arbres rguliers gauches qui sont des repr esentants canoniques de nouvelles classes de conjugauisons d'arbre plan plant es. Nous donnons une formule d'numration pour ces arbres. Dans plusieurs cas la combinaison de ces deux ingrdients aboutit la preuve combinatoire de certaines formules de W.T. Tutte et donne des algorithmes de gnration alatoire uniforme pour les cartes planaires associes.
[1]
Julian West,et al.
Raney Paths and a Combinatorial Relationship between Rooted Nonseparable Planar Maps and Two-Stack-Sortable Permutations
,
1996,
J. Comb. Theory, Ser. A.
[2]
W. T. Tutte.
A Census of Planar Maps
,
1963,
Canadian Journal of Mathematics.
[3]
W. T. Tutte.
A Census of Hamiltonian Polygons
,
1962,
Canadian Journal of Mathematics.
[4]
Gilles Schaeer,et al.
Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees
,
1997
.
[5]
Mikl Os,et al.
Exact Enumeration of 1342-avoiding Permutations a Close Link with Labeled Trees and Planar Maps
,
1997
.