Variable selection in generalized functional linear models

Modern research data, where a large number of functional predictors is collected on few subjects are becoming increasingly common. In this paper we propose a variable selection technique, when the predictors are functional and the response is scalar. Our approach is based on adopting a generalized functional linear model framework and using a penalized likelihood method that simultaneously controls the sparsity of the model and the smoothness of the corresponding coefficient functions by adequate penalization. The methodology is characterized by high predictive accuracy, and yields interpretable models, while retaining computational efficiency. The proposed method is investigated numerically in finite samples, and applied to a diffusion tensor imaging tractography data set and a chemometric data set.

[1]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[2]  Heng Lian SHRINKAGE ESTIMATION AND SELECTION FOR MULTIPLE FUNCTIONAL REGRESSION , 2011 .

[3]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[4]  Paul H. C. Eilers,et al.  Generalized linear regression on sampled signals and curves: a P -spline approach , 1999 .

[5]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[6]  Mathew W. McLean,et al.  Journal of Computational and Graphical Statistics Functional Generalized Additive Models Functional Generalized Additive Models Accepted Manuscript Accepted Manuscript , 2022 .

[7]  Ciprian M Crainiceanu,et al.  Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements , 2012, Journal of the Royal Statistical Society. Series C, Applied statistics.

[8]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[9]  S. Geer,et al.  High-dimensional additive modeling , 2008, 0806.4115.

[10]  Ulrich Stadtmüller,et al.  Generalized functional linear models , 2005 .

[11]  Ana-Maria Staicu,et al.  Modeling Functional Data with Spatially Heterogeneous Shape Characteristics , 2012, Biometrics.

[12]  Sadanori Konishi,et al.  Variable selection for functional regression models via the L1 regularization , 2011, Comput. Stat. Data Anal..

[13]  Daniel S. Reich,et al.  Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis , 2011, NeuroImage.

[14]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[15]  Ciprian M. Crainiceanu,et al.  refund: Regression with Functional Data , 2013 .

[16]  Gerhard Tutz,et al.  Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression , 2010 .

[17]  Gareth M. James,et al.  Functional additive regression , 2015, 1510.04064.

[18]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[19]  Rasmus Bro,et al.  Chemometrics in food science—a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance , 1998 .

[20]  Ciprian Crainiceanu,et al.  Longitudinal scalar-on-functions regression with application to tractography data. , 2013, Biostatistics.

[21]  Dennis D. Cox,et al.  A Functional Generalized Linear Model with Curve Selection in Cervical Pre-cancer Diagnosis Using Fluorescence Spectroscopy , 2009 .

[22]  R. Bro Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis , 1999 .

[23]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[24]  Gerhard Tutz,et al.  Regularization and Model Selection with Categorial Effect Modifiers , 2010 .

[25]  Peter A. Calabresi,et al.  Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis , 2007, NeuroImage.

[26]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[27]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[28]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[29]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[30]  Brian Caffo,et al.  Longitudinal functional principal component analysis. , 2010, Electronic journal of statistics.

[31]  H. Bondell,et al.  Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR , 2008, Biometrics.

[32]  Ciprian M Crainiceanu,et al.  Penalized Functional Regression , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[33]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[34]  Gareth M. James,et al.  Functional linear regression that's interpretable , 2009, 0908.2918.