Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans

The ability of animals to effectively locate and navigate toward food sources is central for survival. Here, using C. elegans nematodes, we reveal the neural mechanism underlying efficient navigation in chemical gradients. This mechanism relies on the activity of two types of chemosensory neurons: one (AWA) coding gradients via stochastic pulsatile dynamics, and the second (AWCON) coding the gradients deterministically in a graded manner. The pulsatile dynamics of the AWA neuron adapts to the magnitude of the gradient derivative, allowing animals to take trajectories better oriented toward the target. The robust response of AWCON to negative derivatives promotes immediate turns, thus alleviating the costs incurred by erroneous turns dictated by the AWA neuron. This mechanism empowers an efficient navigation strategy that outperforms the classical biased-random walk strategy. This general mechanism thus may be applicable to other sensory modalities for efficient gradient-based navigation.Finding one’s way to a food source along a complex gradient is central to survival for many animals. Here, the authors report that in C. elegans, the distinct response dynamics of two sensory neurons to odor gradients can support a navigation model more efficient than the biased-random walk.

[1]  N D Pentcheff,et al.  Odor Plumes and Animal Navigation in Turbulent Water Flow: A Field Study. , 1995, The Biological bulletin.

[2]  Koichi Hashimoto,et al.  Calcium dynamics regulating the timing of decision-making in C. elegans , 2017, eLife.

[3]  J. Sulston,et al.  The DNA of Caenorhabditis elegans. , 1974, Genetics.

[4]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[5]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[6]  Zhaoyu Li,et al.  Encoding of Both Analog- and Digital-like Behavioral Outputs by One C. elegans Interneuron , 2014, Cell.

[7]  H. Berg,et al.  Transient response to chemotactic stimuli in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[9]  Damien Garcia,et al.  Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..

[10]  David B. Dusenbery,et al.  Responses of the nematodeCaenorhabditis elegans to controlled chemical stimulation , 1980, Journal of comparative physiology.

[11]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[12]  Aravinthan D. T. Samuel,et al.  Dynamic Encoding of Perception, Memory, and Movement in a C. elegans Chemotaxis Circuit , 2014, Neuron.

[13]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[14]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[15]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[16]  U. Bhalla,et al.  Laterality and Symmetry in Rat Olfactory Behavior and in Physiology of Olfactory Input , 2013, The Journal of Neuroscience.

[17]  Aravinthan D. T. Samuel,et al.  Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants. , 2008, Journal of Neurophysiology.

[18]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[19]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[20]  Steven W. Flavell,et al.  A Circuit for Gradient Climbing in C. elegans Chemotaxis. , 2015, Cell reports.

[21]  Jae Im Choi,et al.  A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans , 2015, The ISME Journal.

[22]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[23]  A. Zaslaver,et al.  A multi-animal tracker for studying complex behaviors , 2017, BMC Biology.

[24]  N. A. Croll Behavioural analysis of nematode movement. , 1975, Advances in parasitology.

[25]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[26]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[27]  P. Sengupta,et al.  Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[28]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[29]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[30]  Zengcai V. Guo,et al.  Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behavior , 2012, Nature.

[31]  E. Jorgensen,et al.  UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[32]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[33]  Alon Zaslaver,et al.  Hierarchical sparse coding in the sensory system of Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[34]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[35]  Christopher M. Clark,et al.  Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans , 2013, bioRxiv.

[36]  S. Lockery The computational worm: spatial orientation and its neuronal basis in C. elegans , 2011, Current Opinion in Neurobiology.

[37]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[38]  P. Devreotes,et al.  Chemotaxis: signalling the way forward , 2004, Nature Reviews Molecular Cell Biology.

[39]  A. Zaslaver,et al.  Serotonin promotes exploitation in complex environments by accelerating decision-making , 2016, BMC Biology.

[40]  J Abbott,et al.  SIGNALLING - THE WAY FORWARD , 2000 .

[41]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[42]  J. Stock,et al.  Bacterial chemotaxis , 2003, Current Biology.

[43]  Lin Sun,et al.  In vivo neuronal calcium imaging in C. elegans. , 2013, Journal of visualized experiments : JoVE.

[44]  Joshua W Shaevitz,et al.  Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[45]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[46]  S. Lockery,et al.  Analysis of the effects of turning bias on chemotaxis in C. elegans , 2005, Journal of Experimental Biology.

[47]  Cori Bargmann,et al.  High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments , 2011, Nature Methods.

[48]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[49]  Cori Bargmann,et al.  High-throughput imaging of neuronal activity in Caenorhabditis elegans , 2013, Proceedings of the National Academy of Sciences.

[50]  M. Félix,et al.  The natural history of Caenorhabditis elegans , 2010, Current Biology.

[51]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  J. Adler Chemotaxis in bacteria. , 1976, Journal of supramolecular structure.

[53]  Ido Golding,et al.  Chemotactic adaptation kinetics of individual Escherichia coli cells , 2012, Proceedings of the National Academy of Sciences.

[54]  Damien Garcia,et al.  A fast all-in-one method for automated post-processing of PIV data , 2011, Experiments in fluids.

[55]  Edward S Boyden,et al.  Addendum: Independent optical excitation of distinct neural populations , 2014, Nature Methods.

[56]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[57]  Alex Gomez-Marin,et al.  Multilevel control of run orientation in Drosophila larval chemotaxis , 2014, Front. Behav. Neurosci..

[58]  L. Belluscio,et al.  Coding odorant concentration through activation timing between the medial and lateral olfactory bulb. , 2012, Cell Reports.

[59]  Cori Bargmann,et al.  Temporal Responses of C. elegans Chemosensory Neurons Are Preserved in Behavioral Dynamics , 2014, Neuron.