A diffusion-driven Characteristic Mapping method for particle management

We present a novel particle management method using the Characteristic Mapping framework. In the context of explicit evolution of parametrized curves and surfaces, the surface distribution of marker points created from sampling the parametric space is controlled by the area element of the parametrization function. As the surface evolves, the area element becomes uneven and the sampling, suboptimal. In this method we maintain the quality of the sampling by pre-composition of the parametrization with a deformation map of the parametric space. This deformation is generated by the velocity field associated to the diffusion process on the space of probability distributions and induces a uniform redistribution of the marker points. We also exploit the semigroup property of the heat equation to generate a submap decomposition of the deformation map which provides an efficient way of maintaining evenly distributed marker points on curves and surfaces undergoing extensive deformations.

[1]  Gabriel Peyré,et al.  Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..

[2]  Thomas Hagstrom,et al.  On Advection by Hermite Methods , 2011 .

[3]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[4]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..

[5]  J. Carrillo,et al.  A blob method for diffusion , 2017, Calculus of Variations and Partial Differential Equations.

[6]  D. Salac,et al.  Modeling of multicomponent three-dimensional vesicles , 2017, Computers & Fluids.

[7]  Min Zhang,et al.  Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation , 2016, Comput. Aided Geom. Des..

[8]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..

[9]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[10]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[11]  Xin Zhao,et al.  Area-Preservation Mapping using Optimal Mass Transport , 2013, IEEE Transactions on Visualization and Computer Graphics.

[12]  Yann Brenier,et al.  The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .

[13]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[14]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[15]  Gabriel Taubin,et al.  Space‐Optimized Texture Maps , 2002 .

[16]  J. Carrillo,et al.  Primal Dual Methods for Wasserstein Gradient Flows , 2019, Foundations of Computational Mathematics.

[17]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[18]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[19]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[20]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[21]  C. Villani Optimal Transport: Old and New , 2008 .

[22]  Andrew T. T. McRae,et al.  The scaling and skewness of optimally transported meshes on the sphere , 2017, J. Comput. Phys..

[23]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[24]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[25]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[26]  Thomas Hagstrom,et al.  Hermite Methods for the Scalar Wave Equation , 2018, SIAM J. Sci. Comput..

[27]  A. M. Winslow Adaptive-mesh zoning by the equipotential method , 1981 .

[28]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[29]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[30]  Thomas Hagstrom,et al.  Solving PDEs with Hermite Interpolation , 2015 .

[31]  Michael Bergdorf,et al.  Multilevel Adaptive Particle Methods for Convection-Diffusion Equations , 2005, Multiscale Model. Simul..

[32]  Paul Mycek,et al.  Formulation and analysis of a diffusion-velocity particle model for transport-dispersion equations , 2014, Computational and Applied Mathematics.

[33]  Gabriel Peyré,et al.  Convergence of Entropic Schemes for Optimal Transport and Gradient Flows , 2015, SIAM J. Math. Anal..

[34]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[35]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[36]  Jian Sun,et al.  Optimal mass transport for geometric modeling based on variational principles in convex geometry , 2014, Engineering with Computers.

[37]  S. Mas-Gallic,et al.  Presentation and analysis of a diffusion-velocity method , 1999 .

[38]  David Salac,et al.  Cahn-Hilliard on surfaces: A numerical study , 2016, Appl. Math. Lett..

[39]  C. Rycroft,et al.  Reference map technique for finite-strain elasticity and fluid-solid interaction , 2012 .

[40]  Jean-Christophe Nave,et al.  The Characteristic Mapping Method for the Linear Advection of Arbitrary Sets , 2013, SIAM J. Sci. Comput..

[41]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[42]  Jean-Christophe Nave,et al.  A Characteristic Mapping Method for the two-dimensional incompressible Euler equations , 2021, J. Comput. Phys..