暂无分享,去创建一个
[1] Gabriel Peyré,et al. Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..
[2] Thomas Hagstrom,et al. On Advection by Hermite Methods , 2011 .
[3] Jean-David Benamou,et al. An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .
[4] Hans-Peter Seidel,et al. A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..
[5] J. Carrillo,et al. A blob method for diffusion , 2017, Calculus of Variations and Partial Differential Equations.
[6] D. Salac,et al. Modeling of multicomponent three-dimensional vesicles , 2017, Computers & Fluids.
[7] Min Zhang,et al. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation , 2016, Comput. Aided Geom. Des..
[8] Michael Bergdorf,et al. A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..
[9] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[10] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[11] Xin Zhao,et al. Area-Preservation Mapping using Optimal Mass Transport , 2013, IEEE Transactions on Visualization and Computer Graphics.
[12] Yann Brenier,et al. The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .
[13] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[14] T. Chan,et al. Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.
[15] Gabriel Taubin,et al. Space‐Optimized Texture Maps , 2002 .
[16] J. Carrillo,et al. Primal Dual Methods for Wasserstein Gradient Flows , 2019, Foundations of Computational Mathematics.
[17] S. Yau,et al. Global conformal surface parameterization , 2003 .
[18] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[19] Benjamin Seibold,et al. A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..
[20] Yalin Wang,et al. Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.
[21] C. Villani. Optimal Transport: Old and New , 2008 .
[22] Andrew T. T. McRae,et al. The scaling and skewness of optimally transported meshes on the sphere , 2017, J. Comput. Phys..
[23] Benjamin Seibold,et al. Jet schemes for advection problems , 2011, 1101.5374.
[24] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[25] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[26] Thomas Hagstrom,et al. Hermite Methods for the Scalar Wave Equation , 2018, SIAM J. Sci. Comput..
[27] A. M. Winslow. Adaptive-mesh zoning by the equipotential method , 1981 .
[28] Ronald Fedkiw,et al. A review of level-set methods and some recent applications , 2018, J. Comput. Phys..
[29] P. Koumoutsakos,et al. A Lagrangian particle level set method. , 2005 .
[30] Thomas Hagstrom,et al. Solving PDEs with Hermite Interpolation , 2015 .
[31] Michael Bergdorf,et al. Multilevel Adaptive Particle Methods for Convection-Diffusion Equations , 2005, Multiscale Model. Simul..
[32] Paul Mycek,et al. Formulation and analysis of a diffusion-velocity particle model for transport-dispersion equations , 2014, Computational and Applied Mathematics.
[33] Gabriel Peyré,et al. Convergence of Entropic Schemes for Optimal Transport and Gradient Flows , 2015, SIAM J. Math. Anal..
[34] J. Moser,et al. On a partial differential equation involving the Jacobian determinant , 1990 .
[35] F. Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.
[36] Jian Sun,et al. Optimal mass transport for geometric modeling based on variational principles in convex geometry , 2014, Engineering with Computers.
[37] S. Mas-Gallic,et al. Presentation and analysis of a diffusion-velocity method , 1999 .
[38] David Salac,et al. Cahn-Hilliard on surfaces: A numerical study , 2016, Appl. Math. Lett..
[39] C. Rycroft,et al. Reference map technique for finite-strain elasticity and fluid-solid interaction , 2012 .
[40] Jean-Christophe Nave,et al. The Characteristic Mapping Method for the Linear Advection of Arbitrary Sets , 2013, SIAM J. Sci. Comput..
[41] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[42] Jean-Christophe Nave,et al. A Characteristic Mapping Method for the two-dimensional incompressible Euler equations , 2021, J. Comput. Phys..