An efficient approach of aerosol thermodynamic equilibrium predictions by the HDMR method

Abstract In this paper, we develop a new and efficient approach for high dimensional atmospheric aerosol thermodynamic equilibrium predictions. The multi-phase and multi-component aerosol thermodynamic input–output systems are solved by the high dimensional model representation (HDMR) method combining with the moving multiple cut points. The developed approach improves the accuracy of numerical simulations for the general high dimensional input–output systems compared with the standard cut-HDMR method. It can simulate efficiently the atmospheric aerosol thermodynamic equilibrium problems in a large range of aerosol concentrations from 10−10 to 10−6 mol m−3. Numerical experiments show that the approach has great computational efficiency and the CPU-time of the approach is much less than that of ISORROPIA. The method does excellent performance in predicting high dimensional aerosol thermodynamic components as well as particulate matters (PMs).

[1]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[2]  Herschel Rabitz,et al.  High‐dimensional model representations generated from low order terms—lp‐RS‐HDMR , 2003, J. Comput. Chem..

[3]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[4]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[5]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[6]  Panos G Georgopoulos,et al.  Correlation method for variance reduction of Monte Carlo integration in RS‐HDMR , 2003, J. Comput. Chem..

[7]  J. Seinfeld,et al.  A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols , 1986 .

[8]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[9]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[10]  A. Nenes,et al.  Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models , 1999 .

[11]  S. Pandis,et al.  An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components , 1999 .

[12]  J. W. Fitzgerald,et al.  Marine aerosols: A review , 1991 .

[13]  J. Seinfeld,et al.  Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols , 1987 .

[14]  A. Nenes,et al.  Inorganic chemistry calculations using HETV—a vectorized solver for the SO42−–NO3−–NH4+ system based on the ISORROPIA algorithms , 2003 .

[15]  M. Taylor,et al.  Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7°N , 2002 .

[16]  J. Seinfeld,et al.  A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes , 2000 .

[17]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .