Entropy-based Image Registration

This thesis investigates the employment of different entropic measures, including Renyi entropy, in the context of image registration. Specifically, we focus on the entropy estimation problem for image registration and provide theoretical and experimental comparisons of two important entropy estimators: the plug-in estimator and minimal entropic graphs. We further develop an image registration framework based on the graph-theoretic estimator. Within this framework, we address practical and theoretical issues such as the incorporation of spatial information, the efficient and fast search of the optimum alignment, and the employment of previously aligned image pairs. These analyses yield fast, robust and accurate multi-modal affine registration algorithms applicable to different medical problems. Next, we investigate the nonrigid registration problem and provide a novel fast entropy-based nonrigid registration algorithm. Finally, we discuss a scientific application, the normalization of the human cerebral cortex based on patterns of functional response, and investigate an algorithm that employs a correlation-based entropic measure.

[1]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[2]  D. Gokhale On entropy-based goodness-of-fit tests , 1983 .

[3]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[4]  Benny Lautrup,et al.  Brownian Warps: A Least Committed Prior for Non-rigid Registration , 2002, MICCAI.

[5]  W. Eric L. Grimson,et al.  Efficient Population Registration of 3D Data , 2005, CVBIA.

[6]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[7]  A. Antos,et al.  Convergence properties of functional estimates for discrete distributions , 2001 .

[8]  David G. Stork,et al.  Pattern Classification , 1973 .

[9]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[10]  W. Eric L. Grimson,et al.  Multi-modal Volume Registration Using Joint Intensity Distributions , 1998, MICCAI.

[11]  Daniel Cremers,et al.  Nonparametric Priors on the Space of Joint Intensity Distributions for Non-Rigid Multi-Modal Image Registration , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[13]  J. Yukich,et al.  Asymptotics for Euclidean functionals with power-weighted edges , 1996 .

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[15]  E. Dudewicz,et al.  Maximum entropy methods in modern spectroscopy: a review and an empiric entropy approach , 1991 .

[16]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[17]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[18]  Alfred O. Hero,et al.  Image matching using alpha-entropy measures and entropic graphs , 2005, Signal Process..

[19]  Paul Suetens,et al.  A viscous fluid model for multimodal non-rigid image registration using mutual information , 2003, Medical Image Anal..

[20]  李幼升,et al.  Ph , 1989 .

[21]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[22]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[23]  Paul A. Viola,et al.  Learning from one example through shared densities on transforms , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[24]  Sébastien Ourselin,et al.  Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images , 2000, MICCAI.

[25]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[26]  Yun He,et al.  A generalized divergence measure for robust image registration , 2003, IEEE Trans. Signal Process..

[27]  Jean-Philippe Thiran,et al.  Affine Registration with Feature Space Mutual Information , 2001, MICCAI.

[28]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[29]  J. Fisher,et al.  An Introduction to Statistical Methods of Medical Image Registration , 2006, Handbook of Mathematical Models in Computer Vision.

[30]  Josiane Zerubia,et al.  Image retrieval and indexing: a hierarchical approach in computing the distance between textured images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[31]  Deniz Erdoğmuş INFORMATION THEORETIC LEARNING: RENYI'S ENTROPY AND ITS APPLICATIONS TO ADAPTIVE SYSTEM TRAINING , 2002 .

[32]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[33]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[34]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[35]  Nicholas Ayache,et al.  Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information , 2001, IEEE Transactions on Medical Imaging.

[36]  Jean-Philippe Thiran,et al.  Multi-modal medical image registration: from information theory to optimization objective , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[37]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[38]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[39]  Guy Marchal,et al.  3D Multi-Modality Medical Image Registration Using Feature Space Clustering , 1995, CVRMed.

[40]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  H. Krim,et al.  Image Registration and Segmentation by Maximizing the Jensen-Rényi Divergence , 2003 .

[42]  Deniz Erdogmus,et al.  Lower and Upper Bounds for Misclassification Probability Based on Renyi's Information , 2004, J. VLSI Signal Process..

[43]  Alfred O. Hero,et al.  Asymptotic theory of greedy approximations to minimal k-point random graphs , 1999, IEEE Trans. Inf. Theory.

[44]  Paul Suetens,et al.  A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information , 2002, MICCAI.

[45]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[46]  Torsten Rohlfing,et al.  Intensity-Based Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an Incompressibility Constraint , 2001, MICCAI.

[47]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[48]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[49]  Bostjan Likar,et al.  A hierarchical approach to elastic registration based on mutual information , 2001, Image Vis. Comput..

[50]  Mert R. Sabuncu,et al.  Spatial Information in Entropy-Based Image Registration , 2003, WBIR.

[51]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[52]  Alfred O. Hero,et al.  Image registration with minimum spanning tree algorithm , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[53]  Erik Gundersen Miller,et al.  Learning from one example in machine vision by sharing probability densities , 2002 .

[54]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[55]  M.R. Sabuncu,et al.  Gradient based nonuniform subsampling for information-theoretic alignment methods , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[56]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Meulen Edward C. van der,et al.  Entropy-Based Statistical Inference, Ii: Selection-Of-The-Best/Complete Ranking For Continuous Distributions On (0,1), With Applications To Random Number Generators , 1983 .

[58]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[59]  Jerry L. Prince,et al.  Image registration based on boundary mapping , 1996, IEEE Trans. Medical Imaging.

[60]  A. Hero,et al.  Asymptotic Relations Between Minimal Graphs andfi-entropy , 2003 .

[61]  M. Seike,et al.  The reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons , 1995, Neuron.

[62]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[63]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  Hilde Bosmans,et al.  Multi-modality image registration within COVIRA , 1995 .

[66]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[67]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[68]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[69]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[70]  Max A. Viergever,et al.  Image registration by maximization of combined mutual information and gradient information , 2000, IEEE Transactions on Medical Imaging.

[71]  Martin E. Hellman,et al.  Probability of error, equivocation, and the Chernoff bound , 1970, IEEE Trans. Inf. Theory.

[72]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[73]  Paul Suetens,et al.  Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information , 1999, Medical Image Anal..

[74]  Paul Suetens,et al.  Free-Form Registration Using Mutual Information and Curvature Regularization , 2003, WBIR.

[75]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[76]  W. Eric L. Grimson,et al.  Multi-modal Image Registration by Minimising Kullback-Leibler Distance , 2002, MICCAI.

[77]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[78]  Matthias Otte,et al.  Elastic registration of fMRI data using Bezier-spline transformations , 2001, IEEE Transactions on Medical Imaging.

[79]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[80]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000, Int. J. Imaging Syst. Technol..

[81]  John W. Fisher,et al.  A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration , 2003, IPMI.

[82]  Deniz Erdoğmuş,et al.  Information transfer through classifiers and its relation to probability of error , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[83]  Erik G. Miller A new class of entropy estimators for multi-dimensional densities , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[84]  Daniel Rueckert,et al.  Non-rigid registration using higher-order mutual information , 2000, Medical Imaging.

[85]  Sergio Verdú,et al.  Fifty Years of Shannon Theory , 1998, IEEE Trans. Inf. Theory.

[86]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[87]  Nicholas Ayache,et al.  The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration , 1998, MICCAI.

[88]  A. Hero,et al.  Entropic Graphs for Registration , 2018, Multi-Sensor Image Fusion and Its Applications.

[89]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[90]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[91]  Max A. Viergever,et al.  Interpolation Artefacts in Mutual Information-Based Image Registration , 2000, Comput. Vis. Image Underst..

[92]  Mert R. Sabuncu,et al.  Graph-theoretic image registration using prior examples , 2005, 2005 13th European Signal Processing Conference.

[93]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[94]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[95]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[96]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[97]  L. Györfi,et al.  Density-free convergence properties of various estimators of entropy , 1987 .