Semantic Models for the First-Stage Retrieval: A Comprehensive Review

Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the firststage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.

[1]  Jian Cheng,et al.  NormFace: L2 Hypersphere Embedding for Face Verification , 2017, ACM Multimedia.

[2]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[3]  ChengXiang Zhai,et al.  A comparative study of methods for estimating query language models with pseudo feedback , 2009, CIKM.

[4]  Ali Farhadi,et al.  Phrase-Indexed Question Answering: A New Challenge for Scalable Document Comprehension , 2018, EMNLP.

[5]  Jean-Pierre Chevallet,et al.  Learning Term Discrimination , 2020, SIGIR.

[6]  Bhaskar Mitra,et al.  Neural Models for Information Retrieval , 2017, ArXiv.

[7]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[8]  Torsten Suel,et al.  Learning Passage Impacts for Inverted Indexes , 2021, SIGIR.

[9]  Jiafeng Guo,et al.  Match²: A Matching over Matching Model for Similar Question Identification , 2020, SIGIR.

[10]  Ming-Wei Chang,et al.  Latent Retrieval for Weakly Supervised Open Domain Question Answering , 2019, ACL.

[11]  Nick Craswell,et al.  Learning to Match using Local and Distributed Representations of Text for Web Search , 2016, WWW.

[12]  Wei-Cheng Chang,et al.  Pre-training Tasks for Embedding-based Large-scale Retrieval , 2020, ICLR.

[13]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[14]  Yiming Yang,et al.  XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.

[15]  ChengXiang Zhai,et al.  Estimation of statistical translation models based on mutual information for ad hoc information retrieval , 2010, SIGIR.

[16]  Jiafeng Guo,et al.  Optimizing Dense Retrieval Model Training with Hard Negatives , 2021, SIGIR.

[17]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[18]  Jian-Yun Nie,et al.  RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space , 2018, ICLR.

[19]  Joel Mackenzie,et al.  Efficiency Implications of Term Weighting for Passage Retrieval , 2020, SIGIR.

[20]  John D. Lafferty,et al.  Information retrieval as statistical translation , 1999, SIGIR '99.

[21]  Kang Zhang,et al.  Towards Personalized and Semantic Retrieval: An End-to-End Solution for E-commerce Search via Embedding Learning , 2020, SIGIR.

[22]  Robert Wing Pong Luk,et al.  A Generative Theory of Relevance , 2008, The Information Retrieval Series.

[23]  Jiafeng Guo,et al.  PROP: Pre-training with Representative Words Prediction for Ad-hoc Retrieval , 2020, ArXiv.

[24]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[25]  Tao Tao,et al.  Language Model Information Retrieval with Document Expansion , 2006, NAACL.

[26]  Jianfeng Gao,et al.  A Human Generated MAchine Reading COmprehension Dataset , 2018 .

[27]  Jimmy J. Lin,et al.  Document Expansion by Query Prediction , 2019, ArXiv.

[28]  Songfang Huang,et al.  A Unified Pretraining Framework for Passage Ranking and Expansion , 2021, AAAI.

[29]  Oriol Vinyals,et al.  Representation Learning with Contrastive Predictive Coding , 2018, ArXiv.

[30]  Jun Wang,et al.  Optimizing top-n collaborative filtering via dynamic negative item sampling , 2013, SIGIR.

[31]  Quan Wang,et al.  Regularized latent semantic indexing , 2011, SIGIR.

[32]  Jason Weston,et al.  Reading Wikipedia to Answer Open-Domain Questions , 2017, ACL.

[33]  Bhaskar Mitra,et al.  Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking using Deep Neural Networks , 2019, ArXiv.

[34]  C. J. van Rijsbergen,et al.  Probabilistic models of information retrieval based on measuring the divergence from randomness , 2002, TOIS.

[35]  W. Bruce Croft,et al.  Improving Language Estimation with the Paragraph Vector Model for Ad-hoc Retrieval , 2016, SIGIR.

[36]  Hang Li,et al.  Convolutional Neural Network Architectures for Matching Natural Language Sentences , 2014, NIPS.

[37]  Oren Etzioni,et al.  Paraphrase-Driven Learning for Open Question Answering , 2013, ACL.

[38]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[39]  Mária Bieliková,et al.  A Comprehensive Survey and Classification of Approaches for Community Question Answering , 2016, ACM Trans. Web.

[40]  Hang Li,et al.  Relevance Ranking Using Kernels , 2010, AIRS.

[41]  W. Bruce Croft,et al.  Relevance-based Word Embedding , 2017, SIGIR.

[42]  Themis Palpanas,et al.  Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search , 2019, Proc. VLDB Endow..

[43]  Junsong Yuan,et al.  Product Quantization Network for Fast Image Retrieval , 2018, ECCV.

[44]  Yoshua Bengio,et al.  On Using Very Large Target Vocabulary for Neural Machine Translation , 2014, ACL.

[45]  Tao Yang,et al.  Efficient Interaction-based Neural Ranking with Locality Sensitive Hashing , 2019, WWW.

[46]  Fernando Diaz,et al.  Regularizing ad hoc retrieval scores , 2005, CIKM '05.

[47]  Huan Ling,et al.  Adversarial Contrastive Estimation , 2018, ACL.

[48]  Bowen Zhou,et al.  LSTM-based Deep Learning Models for non-factoid answer selection , 2015, ArXiv.

[49]  Danqi Chen,et al.  A Discrete Hard EM Approach for Weakly Supervised Question Answering , 2019, EMNLP.

[50]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[51]  Yuan Luo,et al.  Graph Convolutional Networks for Text Classification , 2018, AAAI.

[52]  Katrina Fenlon,et al.  Improving retrieval of short texts through document expansion , 2012, SIGIR '12.

[53]  Oren Kurland,et al.  Corpus structure, language models, and ad hoc information retrieval , 2004, SIGIR '04.

[54]  M. de Rijke,et al.  Short Text Similarity with Word Embeddings , 2015, CIKM.

[55]  Hang Li Learning to Rank for Information Retrieval and Natural Language Processing , 2011, Synthesis Lectures on Human Language Technologies.

[56]  Utpal Garain,et al.  Using Word Embeddings for Automatic Query Expansion , 2016, ArXiv.

[57]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[58]  Hassan Naderi,et al.  A Survey on Nearest Neighbor Search Methods , 2014 .

[59]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[60]  Jason Baldridge,et al.  Learning Dense Representations for Entity Retrieval , 2019, CoNLL.

[61]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[62]  Kaiming He,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Jimmy J. Lin,et al.  Distilling Dense Representations for Ranking using Tightly-Coupled Teachers , 2020, ArXiv.

[64]  Andrew Chou,et al.  Semantic Parsing on Freebase from Question-Answer Pairs , 2013, EMNLP.

[65]  Yi Liu,et al.  Query Rewriting Using Monolingual Statistical Machine Translation , 2010, CL.

[66]  Matthew Henderson,et al.  Training Neural Response Selection for Task-Oriented Dialogue Systems , 2019, ACL.

[67]  Ting Liu,et al.  Attention-over-Attention Neural Networks for Reading Comprehension , 2016, ACL.

[68]  Li Wei,et al.  Sampling-bias-corrected neural modeling for large corpus item recommendations , 2019, RecSys.

[69]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Jamie Callan,et al.  Context-Aware Term Weighting For First Stage Passage Retrieval , 2020, SIGIR.

[71]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[72]  Depeng Jin,et al.  Reinforced Negative Sampling for Recommendation with Exposure Data , 2019, IJCAI.

[73]  Justin Zobel,et al.  Document expansion versus query expansion for ad-hoc retrieval , 2005 .

[74]  Bhaskar Mitra,et al.  An Introduction to Neural Information Retrieval , 2018, Found. Trends Inf. Retr..

[75]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[76]  Petr Baudis,et al.  Modeling of the Question Answering Task in the YodaQA System , 2015, CLEF.

[77]  Guy Blanc,et al.  Adaptive Sampled Softmax with Kernel Based Sampling , 2017, ICML.

[78]  Davis Liang,et al.  Embedding-based Zero-shot Retrieval through Query Generation , 2020, ArXiv.

[79]  Hua Wu,et al.  RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering , 2020, NAACL.

[80]  Jaewoo Kang,et al.  Contextualized Sparse Representations for Real-Time Open-Domain Question Answering , 2020, ACL.

[81]  James P. Callan,et al.  Context-Aware Document Term Weighting for Ad-Hoc Search , 2020, WWW.

[82]  Filip Radlinski,et al.  TREC Complex Answer Retrieval Overview , 2018, TREC.

[83]  Ellen M. Voorhees,et al.  Building a question answering test collection , 2000, SIGIR '00.

[84]  Miles Efron,et al.  Document Expansion Using External Collections , 2017, SIGIR.

[85]  Luyu Gao,et al.  COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List , 2021, NAACL.

[86]  Martin Aumüller,et al.  ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms , 2018, SISAP.

[87]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[88]  Colin Raffel,et al.  Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..

[89]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[90]  Stephan Mandt,et al.  Extreme Classification via Adversarial Softmax Approximation , 2020, ICLR.

[91]  Bhaskar Mitra,et al.  Overview of the TREC 2019 deep learning track , 2020, ArXiv.

[92]  Laure Soulier,et al.  Offline versus Online Representation Learning of Documents Using External Knowledge , 2019, ACM Trans. Inf. Syst..

[93]  W. Bruce Croft,et al.  From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing , 2018, CIKM.

[94]  Kyunghyun Cho,et al.  Passage Re-ranking with BERT , 2019, ArXiv.

[95]  Yelong Shen,et al.  Learning semantic representations using convolutional neural networks for web search , 2014, WWW.

[96]  Jiafeng Guo,et al.  Analysis of the Paragraph Vector Model for Information Retrieval , 2016, ICTIR.

[97]  Felipe Bravo-Marquez,et al.  Hypergeometric Language Model and Zipf-Like Scoring Function for Web Document Similarity Retrieval , 2010, SPIRE.

[98]  William W. Cohen,et al.  Quasar: Datasets for Question Answering by Search and Reading , 2017, ArXiv.

[99]  M. Zaharia,et al.  ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT , 2020, SIGIR.

[100]  Fernando Diaz,et al.  UMass at TREC 2004: Novelty and HARD , 2004, TREC.

[101]  Cícero Nogueira dos Santos,et al.  Learning Hybrid Representations to Retrieve Semantically Equivalent Questions , 2015, ACL.

[102]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[103]  Alexandr Andoni,et al.  Nearest neighbor search : the old, the new, and the impossible , 2009 .

[104]  Hamed Zamani,et al.  Conformer-Kernel with Query Term Independence for Document Retrieval , 2020, ArXiv.

[105]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[106]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval , 2008, NAACL.

[107]  Guido Zuccon,et al.  Integrating and Evaluating Neural Word Embeddings in Information Retrieval , 2015, ADCS.

[108]  Amit Singhal,et al.  Document expansion for speech retrieval , 1999, SIGIR '99.

[109]  Raffaele Perego,et al.  Efficient Document Re-Ranking for Transformers by Precomputing Term Representations , 2020, SIGIR.

[110]  Jacob Eisenstein,et al.  Sparse, Dense, and Attentional Representations for Text Retrieval , 2021, Transactions of the Association for Computational Linguistics.

[111]  Christopher J. C. Burges,et al.  High accuracy retrieval with multiple nested ranker , 2006, SIGIR.

[112]  Van Rijsbergen,et al.  A theoretical basis for the use of co-occurence data in information retrieval , 1977 .

[113]  Kyunghyun Cho,et al.  SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine , 2017, ArXiv.

[114]  Jian-Yun Nie,et al.  Using query contexts in information retrieval , 2007, SIGIR.

[115]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[116]  Danqi Chen,et al.  Dense Passage Retrieval for Open-Domain Question Answering , 2020, EMNLP.

[117]  Yichen Wei,et al.  Circle Loss: A Unified Perspective of Pair Similarity Optimization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Michael Bendersky,et al.  Leveraging Semantic and Lexical Matching to Improve the Recall of Document Retrieval Systems: A Hybrid Approach , 2020, ArXiv.

[119]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[120]  ChengXiang Zhai,et al.  Axiomatic Analysis of Translation Language Model for Information Retrieval , 2012, ECIR.

[121]  Charles Elkan,et al.  Latent semantic indexing (LSI) fails for TREC collections , 2011, SKDD.

[122]  Zhuyun Dai,et al.  Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval , 2019, ArXiv.

[123]  Sergio Guadarrama,et al.  Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[124]  Ankit Singh Rawat,et al.  Sampled Softmax with Random Fourier Features , 2019, NeurIPS.

[125]  Le Zhao,et al.  Term necessity prediction , 2010, CIKM.

[126]  Ran El-Yaniv,et al.  Multi-Hop Paragraph Retrieval for Open-Domain Question Answering , 2019, ACL.

[127]  Kevin Zhou Navigation in a small world , 2017 .

[128]  Kirk Roberts,et al.  TREC-COVID , 2020, SIGIR Forum.

[129]  Matthew Henderson,et al.  Efficient Natural Language Response Suggestion for Smart Reply , 2017, ArXiv.

[130]  Laure Soulier,et al.  Learning Concept-Driven Document Embeddings for Medical Information Search , 2017, AIME.

[131]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[132]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[133]  James P. Callan,et al.  Learning to Reweight Terms with Distributed Representations , 2015, SIGIR.

[134]  Chang Zhou,et al.  Understanding Negative Sampling in Graph Representation Learning , 2020, KDD.

[135]  Beihong Jin,et al.  Improving Document Representations by Generating Pseudo Query Embeddings for Dense Retrieval , 2021, ACL.

[136]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[137]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[138]  Kristian J. Hammond,et al.  Question Answering from Frequently Asked Question Files: Experiences with the FAQ FINDER System , 1997, AI Mag..

[139]  Ping Li,et al.  MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu's Sponsored Search , 2019, KDD.

[140]  Jianfeng Gao,et al.  Dependence language model for information retrieval , 2004, SIGIR '04.

[141]  Ming-Wei Chang,et al.  REALM: Retrieval-Augmented Language Model Pre-Training , 2020, ICML.

[142]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[143]  Zhendong Niu,et al.  Concept Based Query Expansion , 2013, 2013 Ninth International Conference on Semantics, Knowledge and Grids.

[144]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[145]  Daniel Gillick,et al.  End-to-End Retrieval in Continuous Space , 2018, ArXiv.

[146]  Benjamin Piwowarski,et al.  SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking , 2021, SIGIR.

[147]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[148]  Allan Hanbury,et al.  Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking , 2020, ECAI.

[149]  W. Bruce Croft,et al.  Cluster-based retrieval using language models , 2004, SIGIR '04.

[150]  Gianmaria Silvello,et al.  Learning Unsupervised Knowledge-Enhanced Representations to Reduce the Semantic Gap in Information Retrieval , 2020, ACM Trans. Inf. Syst..

[151]  Jiafeng Guo,et al.  B-PROP: Bootstrapped Pre-training with Representative Words Prediction for Ad-hoc Retrieval , 2021, SIGIR.

[152]  Jianfeng Gao,et al.  Clickthrough-based translation models for web search: from word models to phrase models , 2010, CIKM.

[153]  Jimmy J. Lin,et al.  Pretrained Transformers for Text Ranking: BERT and Beyond , 2020, NAACL.

[154]  Songlin Wang,et al.  Joint Learning of Deep Retrieval Model and Product Quantization based Embedding Index , 2021, SIGIR.

[155]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[156]  Yelong Shen,et al.  Generation-Augmented Retrieval for Open-Domain Question Answering , 2020, ACL.

[157]  Le Song,et al.  DC-BERT: Decoupling Question and Document for Efficient Contextual Encoding , 2020, SIGIR.

[158]  Joel L Fagan,et al.  Experiments in Automatic Phrase Indexing For Document Retrieval: A Comparison of Syntactic and Non-Syntactic Methods , 1987 .

[159]  W. Bruce Croft,et al.  Quary Expansion Using Local and Global Document Analysis , 1996, SIGIR Forum.

[160]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[161]  Weinan Zhang,et al.  Improving Negative Sampling for Word Representation using Self-embedded Features , 2017, WSDM.

[162]  Yi Chang,et al.  Adversarial Sampling and Training for Semi-Supervised Information Retrieval , 2018, WWW.

[163]  David Novak,et al.  Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search , 2016, CIKM.

[164]  Ming-Wei Chang,et al.  Natural Questions: A Benchmark for Question Answering Research , 2019, TACL.

[165]  Xuemin Lin,et al.  Approximate Nearest Neighbor Search on High Dimensional Data — Experiments, Analyses, and Improvement , 2016, IEEE Transactions on Knowledge and Data Engineering.

[166]  Marie-Francine Moens,et al.  Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings , 2015, SIGIR.

[167]  Ed H. Chi,et al.  Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations , 2020, WWW.

[168]  Abdur Chowdhury,et al.  A picture of search , 2006, InfoScale '06.

[169]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[171]  Jian Cheng,et al.  Additive Margin Softmax for Face Verification , 2018, IEEE Signal Processing Letters.

[172]  Xiaojie Liu,et al.  Constraining Word Embeddings by Prior Knowledge - Application to Medical Information Retrieval , 2016, AIRS.

[173]  R. Shahsavari,et al.  Deep Learning to Speed up the Development of Structure-Property Relations For Hexagonal Boron Nitride and Graphene. , 2019, Small.

[174]  Luo Si,et al.  Cascade Ranking for Operational E-commerce Search , 2017, KDD.

[175]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[176]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[177]  Wei Li,et al.  Multi-Interest Network with Dynamic Routing for Recommendation at Tmall , 2019, CIKM.

[178]  Jianfeng Gao,et al.  Towards Concept-Based Translation Models Using Search Logs for Query Expansion , 2012, Proceedings of the 21st ACM international conference on Information and knowledge management.

[179]  Linjun Yang,et al.  Embedding-based Retrieval in Facebook Search , 2020, KDD.

[180]  Hang Li,et al.  Semantic Matching in Search , 2014, SMIR@SIGIR.

[181]  Kevyn Collins-Thompson,et al.  Reducing the risk of query expansion via robust constrained optimization , 2009, CIKM.

[182]  Azadeh Shakery,et al.  Distilling Knowledge for Fast Retrieval-based Chat-bots , 2020, SIGIR.

[183]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[184]  Jure Leskovec,et al.  Graph Convolutional Neural Networks for Web-Scale Recommender Systems , 2018, KDD.

[185]  Bhaskar Mitra,et al.  Improving Document Ranking with Dual Word Embeddings , 2016, WWW.

[186]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[187]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[188]  Robert F. Simmons,et al.  Answering English questions by computer: a survey , 1965, CACM.

[189]  Jun Xu,et al.  SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval , 2020, ArXiv.

[190]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[191]  W. Bruce Croft,et al.  A Language Modeling Approach to Information Retrieval , 1998, SIGIR Forum.

[192]  Minjia Zhang,et al.  GRIP: Multi-Store Capacity-Optimized High-Performance Nearest Neighbor Search for Vector Search Engine , 2019, CIKM.

[193]  Florent Perronnin,et al.  Aggregating Continuous Word Embeddings for Information Retrieval , 2013, CVSM@ACL.

[194]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[195]  J. Shane Culpepper,et al.  Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval , 2017, SIGIR.

[196]  Zhiyuan Liu,et al.  End-to-End Neural Ad-hoc Ranking with Kernel Pooling , 2017, SIGIR.

[197]  Allan Hanbury,et al.  Let's measure run time! Extending the IR replicability infrastructure to include performance aspects , 2019, OSIRRC@SIGIR.

[198]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[199]  D. Cheriton From doc2query to docTTTTTquery , 2019 .

[200]  W. Bruce Croft,et al.  A Deep Look into Neural Ranking Models for Information Retrieval , 2019, Inf. Process. Manag..

[201]  Jiafeng Guo,et al.  A Discriminative Semantic Ranker for Question Retrieval , 2021, ICTIR.

[202]  Geoffrey E. Hinton,et al.  Semantic hashing , 2009, Int. J. Approx. Reason..

[203]  Jimmy J. Lin,et al.  Multi-Stage Document Ranking with BERT , 2019, ArXiv.

[204]  Niranjan Balasubramanian,et al.  DeFormer: Decomposing Pre-trained Transformers for Faster Question Answering , 2020, ACL.

[205]  Jason Weston,et al.  Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring , 2019 .

[206]  Richard M. Schwartz,et al.  A hidden Markov model information retrieval system , 1999, SIGIR '99.

[207]  Luyu Gao,et al.  Complementing Lexical Retrieval with Semantic Residual Embedding , 2020, ArXiv.

[208]  Md. Mustafizur Rahman,et al.  Neural information retrieval: at the end of the early years , 2017, Information Retrieval Journal.

[209]  Mandar Mitra,et al.  Word Embedding based Generalized Language Model for Information Retrieval , 2015, SIGIR.

[210]  Sung-Hyon Myaeng,et al.  UHD-BERT: Bucketed Ultra-High Dimensional Sparse Representations for Full Ranking , 2021, ArXiv.

[211]  Michael Lesk,et al.  Word-word associations in document retrieval systems , 1969 .

[212]  Xi Xiong,et al.  From Semantic Retrieval to Pairwise Ranking: Applying Deep Learning in E-commerce Search , 2019, SIGIR.

[213]  Ali Farhadi,et al.  Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index , 2019, ACL.

[214]  Yiqun Liu,et al.  RepBERT: Contextualized Text Embeddings for First-Stage Retrieval , 2020, ArXiv.

[215]  Ching-Yao Chuang,et al.  Debiased Contrastive Learning , 2020, NeurIPS.

[216]  Ellen M. Voorhees,et al.  Overview of the TREC 2004 Robust Retrieval Track , 2004 .

[217]  Charles L. A. Clarke,et al.  Overview of the TREC 2004 Terabyte Track , 2004, TREC.

[218]  M. de Rijke,et al.  Neural Vector Spaces for Unsupervised Information Retrieval , 2017, ACM Trans. Inf. Syst..

[219]  Raffaele Perego,et al.  Expansion via Prediction of Importance with Contextualization , 2020, SIGIR.

[220]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[221]  Ye Li,et al.  Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval , 2020, ArXiv.

[222]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[223]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[224]  Arantxa Otegi,et al.  Document Expansion Based on WordNet for Robust IR , 2010, COLING.

[225]  Trevor Darrell,et al.  Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing) , 2006 .

[226]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[227]  Jian Sun,et al.  Optimized Product Quantization , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[228]  Gareth J. F. Jones,et al.  Representing Documents and Queries as Sets of Word Embedded Vectors for Information Retrieval , 2016, ArXiv.

[229]  Jianhua Z. Huang,et al.  Robust Negative Sampling for Network Embedding , 2019, AAAI.

[230]  Djoerd Hiemstra,et al.  A probabilistic justification for using tf×idf term weighting in information retrieval , 2000, International Journal on Digital Libraries.

[231]  James Allan,et al.  A Comparative Study of Utilizing Topic Models for Information Retrieval , 2009, ECIR.

[232]  Nick Craswell,et al.  Query Expansion with Locally-Trained Word Embeddings , 2016, ACL.

[233]  Yury A. Malkov,et al.  Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[234]  Xueqi Cheng,et al.  Match-SRNN: Modeling the Recursive Matching Structure with Spatial RNN , 2016, IJCAI.

[235]  Zhiyuan Liu,et al.  Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search , 2018, WSDM.

[236]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[237]  Tobias Gass,et al.  Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks , 2016, IEEE Transactions on Medical Imaging.

[238]  Bhaskar Mitra,et al.  A Dual Embedding Space Model for Document Ranking , 2016, ArXiv.

[239]  Pierre Zweigenbaum,et al.  GNEG: Graph-Based Negative Sampling for word2vec , 2018, ACL.

[240]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[241]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[242]  Eunsol Choi,et al.  TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension , 2017, ACL.