A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems

This paper extends the regularized smoothing Newton method in vector complementarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem as special cases. In particular, we study strong semismoothness and Jacobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform approximation property and the Jacobian consistency of the Chen-Mangasarian smoothing function of the natural residual. Based on these properties, global and quadratical convergence of the proposed algorithm is established.

[1]  M. Malik,et al.  Cone complementarity problems with finite solution sets , 2006, Oper. Res. Lett..

[2]  M. Seetharama Gowda,et al.  Some Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones , 2007 .

[3]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[4]  Defeng Sun,et al.  Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..

[5]  M. Seetharama Gowda,et al.  Some P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras , 2005, Math. Oper. Res..

[6]  Defeng Sun,et al.  Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..

[7]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[8]  Paul Tseng,et al.  Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems , 2003, SIAM J. Optim..

[9]  Paul Tseng,et al.  An unconstrained smooth minimization reformulation of the second-order cone complementarity problem , 2005, Math. Program..

[10]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[11]  R. Sznajder,et al.  Some P-properties for linear transformations on Euclidean Jordan algebras , 2004 .

[12]  P. Tseng Analysis Of A Non-Interior Continuation Method Based On Chen-Mangasarian Smoothing Functions For Com , 1998 .

[13]  H. Qi,et al.  Cartesian P-property and Its Applications to the Semidefinite Linear Complementarity Problem , 2006, Math. Program..

[14]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[15]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[16]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[17]  Jiming Peng,et al.  A Continuation Method for the Linear Second-Order Cone Complementarity Problem , 2005, ICCSA.

[18]  Defeng Sun,et al.  Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions , 2005, Math. Program..

[19]  Defeng Sun,et al.  A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems , 2003, SIAM J. Optim..

[20]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[21]  Steve Smale,et al.  Algorithms for Solving Equations , 2010 .

[22]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[23]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[24]  Zheng-Hai Huang,et al.  Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem , 2003 .

[25]  Masao Fukushima,et al.  A hybrid Newton method for solving the variational inequality problem via the D-gap function , 1999, Math. Program..

[26]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[27]  M. Seetharama Gowda,et al.  Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras , 2006, Math. Oper. Res..

[28]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[29]  Akiko Yoshise,et al.  Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones , 2006, SIAM J. Optim..

[30]  George Isac Topological Methods in Complementarity Theory , 2009, Encyclopedia of Optimization.

[31]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[32]  M. Koecher,et al.  The Minnesota Notes on Jordan Algebras and Their Applications , 1999 .

[33]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[34]  Li-Wei Zhang,et al.  Some Properties of a Class of Merit Functions for Symmetric Cone complementarity Problems , 2006, Asia Pac. J. Oper. Res..

[35]  Masao Fukushima,et al.  A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..